

Vibroacoustic communications of the fiddler crabs Austruca lactea

¹<u>Minju Kim</u>, ²Seojeong Park, ¹Hye Min Lee, ¹Taewon Kim*

¹Inha University, 100 Inha-ro, Nam-gu, Incheon, South Korea ²Division of Ocean Science, Korea Polar Research Institute, Incheon, South Korea

2022. 09.30

" Vibroacoustic communications "

" Vibroacoustic communications "

Study topic

1 Communication

② Human disturbance (vibration)

1. Fiddler crabs change their tunes depending on the contexts

Background Vibration mechanisms of Fiddler crabs

<Detection>

- Receptor : Barth's myochordotonal organ in the merus of the walking legs
- Substrate-borne vibration (transmit through solid objects) opper et al, 2001)
- Sensitive frequency ranges: 300-700Hz

(Salmon and Horch, 1973; Popper et al., 2001)

"MERUS"

<Production>

- Percussion of walking legs
- Vibrations of large claw
- Vibrational signals (Frequency range, repetition, amplitude) almon, M. 1967; Takeshita, F., & Murai, M. 2016; Mowles, et al. 2017)

Background Austruca lactea (De Haan, 1835)

- Classification : Animalia Arthropoda Malacostraca Decapoda Ocypodidae Austruca
- Size : about 14 mm (carapace width)
- Habitat : the upper intertidal zone in the Indo-Pacific
- **Remark** : Endangered species in South Korea
- **Behavior** : vibrational (seismic) communication ····

Large cheliped (claw)

-Fighting -Waving

MALE

Background Vibrations of A. lactea

Yamaguchi, T. (2001) Takeshita, F. & Murai, M. (2016)

<Drumming> = Courtship behavior

Background Vibrations of A. lactea

<Drumming signal>

Study site

- Date: May to July in 2021 to 2022 (65 days)
- Time: Diurnal low tide

Methods

< Material

>

- ✓ Vibration recording: Accelerometer
- ✓ Video recording: Camera
- $\checkmark~$ The Female decoy

< Data

- ✓ Band-pass filter → background noise
- $\checkmark~$ Fast Fourier Transform (FFT) \rightarrow Frequency

11

✓ Short-Time Fourier Transform (STFT) →
Frequency

by MATLAR software (2020)

Methods vibration analysis indicators

- (1) Pulse rate (pulses/s) \rightarrow pulse velocity
- ② Pulses per train
- ③ Train duration (s)
- **④** Pulse duration (s)
- **(5)** Peak amplitude (m/s²)
- **(6)** Dominant frequency (Hz)

Results Drumming of A. lactea

Drummin 4 g (1) Courtship drumming : inside the burrow (N = 33) (2) Agonistic drumming : outside the burrow (N = 44)

Hypothesis & Prediction

>Hypothesis

The male *A. lactea* will change their drumming signals depending on the courtship and agonistic situations.

Prediction

- 1. They will emit different pulse rate of drumming in the two contexts.
- 2. They will emit different pulses per train of drumming in the two contexts.
- 3. They will emit different pulse duration of drumming in the two contexts.
- 4. They will emit different train duration of drumming in the two contexts.
- 5. They will emit different frequency of drumming in the two contexts.

Results & Discussion How to drum KExample of agonistic drumming

"We drum using both large and small chelipeds !"

Especially by folding the carpus (2) between the merus (3) and manus (1

Results & Discussion How to drum

※ Example of agonistic drumming

Time (s)

Results & Discussion Courtship vs Agonistic drumming

<Courtship

<Agonistic>

Results & Discussion Courtship vs Agonistic drumming

Conclusions

- Austruca lactea use drumming for courtship and agonistic behavior.
- There are remarkable differences of signal traits in two contexts.
- We provided the evidence that crabs might have evolved by manipulating their vibrational signals according to contexts.

2. Does construction vibrations alter seismic communications

of male fiddler crabs (Austruca lactea) ?

Background

Hypothesis & Prediction

>Hypothesis

Construction vibrations will influence the vibrational communication of male Austruca lactea.

Prediction

- 1. Construction vibrations will change the pulse rate of drumming.
- 2. Construction vibrations will change the pulse duration of drumming.
- 3. Construction vibrations will change the peak amplitude of drumming.
- 4. Construction vibrations will change the dominant frequency of drumming.

Methods

"Pile driving"

offshore wind turbine / bridge construction

 \rightarrow It causes various range of frequencies.

imitating the pile driving.

Methods

< Statistics

- analysis > Generalized Estimating Equations \checkmark
- (Toto Egroups (control, treatment) × Three phases (pre-, mid-, post- \checkmark stimulus)

<Control>

<Treatment>

25

There are possibilities that,

(15)Stimulus frequencies (250Hz)

②Stimulus intensity (50dB)

Conclusion

Frequency (250Hz) \rightarrow more wide range of frequencies

Intensity (50dB) \rightarrow more loud intensity

We can determine whether

A. lactea are affected by construction vibrations or not.

1. Crabs also have sophisticated vibrational communication systems.

2. We have to study & reduce the impact of human disturbance on their communication.

 National Research Foundation of Kore a

• The Korean Society of Oceanography for participation in PICES-2022

