

Ecophysiological responses of *Pseudo-nitzschia* and *Dinophysis* toxic species to environmental variations related to climate change

Dinoflagellates photo by Fickle and Freckled Early career scientist Virginia institute of marine science (VIMS)

> Contact: <u>nayache@vims.edu</u> 804.684.7812

Art of Diatom algae (from Ernst Haetkel)

Harmful algal blooms: HAB producers of potent toxins and harmful to human and wildlife health

Global increase of HABs

Environmental factors that may affect the proliferation and toxicity of HABs

Unusual extreme weather event: Cyclone Xynthia 51°N

Highly toxic bloom of Pseudo-nitzschia

Domoic acid exceeded safety thresholds by 150-fold

Closures of **scallop** fishing activities for **2 years**

E

(Ifremer-Quadrige²-REPHY 2014)

Two decades of *Pseudo-nitzschia* spp. blooms and king scallop contamination by domoic acid along the French Atlantic and English Channel coasts (Berengere et al. 2016)

Impact of salinity and pH variation on growth and toxin content of several toxic and non-toxic *Pseudo-nitzschia* strains

Ayache et al. 2019, 2020, and 2021

Experimental set-up

Experimental conditions:

7 strains of *P. fraudulenta* (non toxic) and *P. australis* (toxic)

Namibia and France (Atlantic, English channel)

Semi-continuous cultures,

Acclimated > 20 generations

1. Effect of pH on growth

> Pseudo-nitzschia rely on CO₂ and HCO₃⁻ uptake for photosynthesis (Rost et al. 2003)

➤ Theoretically: decrease of pH → increase growth rate

No effect of pH variation on growth rates

1. Effect of pH on growth

> Toxic *P. australis* strains

2. Effect of pH on DA content

> No DA stimulation in any of *P. fraudulenta* strains

Toxic P. australis

2. Effect of pH on DA content

Shift from optimum intracellular pH

→ Affected physiological processes: enzyme activity, protein function and nutrient uptake

→ High energy spent on maintaining high growth at the expense of DA production

Summary

• No effect of pH variation on growth

→ P. fraudulenta and P. australis strains acclimated and maintained high growth

- Significant lower cellular DA content at lower pH levels (up to 10-fold)
- Significant variability: species (*P. fraudulenta* vs *P. autralis*), strain, geographical origin

Future perspectives

- DA biosynthesis pathway (Brunson et al. 2018)
- → Gene expression (+/-) under conditions of decrease pH
- Interactive effects of decrease pH + irradiance and T in response to climate change

2- Ecophysiological responses of *Dinophysis* toxic species to environmental variations related to climate change

VIRGINIA INSTITUTE OF MARINE SCIENCE

Why Dinophysis?

Since 2008: "Dinophysis emerging threat to Human health and fisheries in USA"

Toxin shuts down Sequim Bay shellfish harvests

Originally published August 11, 2011 at 6:42 pm | Updated August 12, 2011 at 10:48 am

A new biotoxin found on the Olympic Peninsula has caused a shellfish closure after an adult and two children were sickened when they harvested and ate mussels from Sequim Bay.

Characterization of 20 toxin-producing *Dinophysis* strains isolated from US coastal waters

Investigate environmental and biological drivers of *Dinophysis* blooms and toxicity *in situ* within and across regions

Dinophysis trophic mode: obligate mixotroph

First successful cultures of *Mesodinium* (Yih et al. **2004**) and *Dinophysis* (Park et al. **2006**)

> Mesodinium and Dinophysis:

Combining both phototrophy and heterotrophy - Kleptoplast (Hansen et al., 2019)

- > Dinophysis rely on chloroplast uptake from preys for photosynthesis
- → growth, metabolite synthesis

Effect of irradiance

7 different isolates from 3 estuarine and coastal regions

7 different isolates from 3 estuarine and coastal regions

Toxin profiles: species- and origin-specific

Experimental set-up

Monitoring:

Acclimated 4 months > 10-20 generations

Maintained in exponential growth phase

- Growth rate (counting)
- > Photosynthetic efficiency F_v/F_m (Phyto-PAM)
- Toxin content and production rates (LC-MS/MS)

1. Effect on growth

Dinophysis strains and species

2. Effect on photosynthetic efficiency F_v/F_m

$> F_v/F_m$ varied as a function of irradiance \rightarrow Higher F_v/F_m at lower irradiance

At low irradiance

Higher pigment content:

Chl a, phycoerythrin Photosystems more efficient/active to capture the max available light

3. Effect on toxin production

Dinophysis strains

3. Effect on toxin production

Total DST: OA + DTX1 (pg cell⁻¹ d⁻¹)

- Mid-Atlantic isolates: no effect
- West coast isolates: Highest DST production rates at 10 and 100
- Gulf of Mexico: Highest DST production rates at 100 and 400
- North East Atlantic strain: Highest DST at 400

Summary

> All strains able to photo-acclimate and tolerate a large range of irradiance (10 to 400)

But no direct effect of irradiance on growth and toxicity

→ Strong intraspecific variations are most likely controlled by genetic differences between

Dinophysis species

Perspectives

- Other collaborators investigating: salinity, turbulence, pH, T ° for the same isolates
- Interactive effects of irradiance + T° in response to climate change scenarios (Wells et al. 2021, Boyd et al. 2018) including transcriptomics
- ➔ Modelling effect of these changes ➔ predict bloom formation and toxicity triggers