

Assessment of future changes in the sea surface temperature in the Northwest Pacific projected by CMIP6 models

<u>Heeseok Jung (jhs86@kiost.ac.kr)</u>¹, Chan Joo Jang^{1,2}, Yong Sun Kim¹, and Jae-Woo Park³ ¹Korea Institute of Ocean Science and Technology ²University of Science and Technology ³Kongju National University

Abstract

Coupled Model Intercomparison Project Phase 6 (CMIP6) models have projected more rapid warming than CMIP5 models. However, the CMIP6 models still have considerable inter-model differences for future sea surface temperature (SST) projection. In this study, we examine SST biases in the western North Pacific (wNP) simulated by 30 CMIP6 models and evaluate future changes in the SST under the lower emission scenario (SSP1-2.6) and higher emission scenario (SSP5-8.5) from the selected seven CMIP 6 models by assessing the index of agreement. The selected models were ACCESS-ESM1-5, CanESM5, EC-Earth3, KACE-1-0-G, MPI-ESM1-2-HR, MRI-ESM2-0, and UKESM1-0-LL. The SST in the wNP is projected to increase by approximately 1.8°C for SSP1-2.6 and 4.5°C for SSP5-8.5. Noticeably, the projected SST changes are greater in summer (August) than in winter (February) under SSP5-8.5. The stronger surface warming in summer are primarily attributed to thinning of the summer mixed layer (MLD) compared to winter MLD. The inter-model difference in the future SST changes is considerably large in the mixed water region, such as the interfrontal zone between the Kuroshio and the Oyashio and the Yellow Sea. This finding suggests less reliability in future projection in the interfrontal zone.

Future projection of SST by using CMIP6 models

Data and Methods

- Data: CMIP6 (https://esgf-node.llnl.gov/projects/cmip6/)
- Variables: SST and 10m wind (evaluation only) affecting the upper ocean
- The number of CMIP6 Models: **30** models (SST) and **23** models (10 m wind)
- CMIP6 Scenario: Historical, SSP1-2.6, and SSP5-8.5
- Reanalysis data: WOA05 (SST) and ERA5 (10 m wind)
- Model evaluation: Index of agreement indicating how well the observation and model agree

Table 1. CMIP6 model list

No.	Model name	Horizontal resolution	Country	Institute	note	
1	ACCESS-CM2	360*300	Australia	CSIRO		
2	ACCESS-ESM1-5	360*300	Australia	CSIRO		
3	AWI-CM-1-1-MR	25km	Germany	AWI		
4	BCC-CSM2-MR	360*232	China	BCC		
5	CAMS-CSM1-0	360*200	China	CAMS		
6	CanESM5	360*291	Canada	CCCma		
7	CAS-ESM2-0	360*196	China	CAS	SST only	
8	CESM2-WACCM	320*384	USA	NCAR	SST only	
9	CMCC-CM2-SR5	362*292	Italy	CEMCC		
10	CMCC-ESM2	362*292	Italy	CEMCC		
11	EC-Earth3	364*292	EU	ECMWF		
12	EC-Earth3-Veg	363*292	EU	ECMWF		$d_{rof} =$
13	EC-Earth3-Veg-LR	365*292	EU	ECMWF		Tej
14	FGOALS-f3-L	360*218	China	CAS		
15	FGOALS-g3	360*218	China	CAS	SST only	
16	FIO-ESM-2-0	320*384	China	FIO	SST only	
17	GFDL-ESM4	720*576	USA	GFDL		
18	INM-CM4-8	360*180	Russia	INM		
19	INM-CM5-0	360*180	Russia	INM		
20	IPSL-CM6A-LR	362*332	France	IPSL		
21	KACE-1-0-G	360*200	South Korea	KMA		
22	MIROC6	360*256	Japan	AORI		
23	MPI-ESM1-2-HR	802*404	Germany	MPI		
24	MPI-ESM1-2-LR	256*220	Germany	MPI		
25	MRI-ESM2-0	360*363	Japan	MRI		
26	NESM3	362*292	China	NUIST		
27	NorESM2-LM	360*385	Norway	NCC	SST only	
28	NorESM2-MM	360*385	Norway	NCC	SST only	
29	TaiESM1	320*385	Thailand	RCEC	SST only	
30	UKESM1-0-LL	362*332	UK	MOHC		

Index of agreement

 $1 - \frac{\sum_{i=1}^{n} |P_i - O_i|}{2\sum_{i=1}^{n} |O_i - \overline{O}|}$, when **Observation variance** Model bias $\sum_{i=1}^{n} |P_i - O_i| \le 2 \sum_{i=1}^{n} |O_i - \overline{O}|$ $\frac{2\sum_{i=1}^{n}|O_{i}-\bar{O}|}{\sum_{i=1}^{n}|P_{i}-O_{i}|} - 1$, when

- Fig. 3. Ensemble mean future SST changes (future historical) estimated from the best seven CMIP6. Under SSP1-2.6 (left panel) and SSP5-8.5 (right panel) in order 2021-2040, 2041-2060, 2081-2100. The historical period is 1995 – 2014.
- MPI-ESM1-2-HR, UKESM1-0-LL, CMIP6 models: MRI-ESM2-0, seven EC-Earth3, ACCESS-ESM1-5, CanESM5, KACE-1-0-G
- **Future periods:**
 - 2021-2040, 2041-2060, 2081-2100
- SST change:
 - SST increases larger at high-latitude than low-latitude region.
 - SST increases larger at summer than winter SST.
 - Reason: warming and salinity reduction \rightarrow strong stratification \rightarrow shallow mixed layer \rightarrow heat capacity increase (Fig. 4; Alexander et al., 2018)

CMIP6 performance evaluation

Fig. 1. Index of agreement for SST and 10m wind as February, August, annual average in 1995 to 2014 from CMIP6 (30) models

 $\sum_{i=1}^{n} |P_i - O_i| > 2 \sum_{i=1}^{n} |O_i - \overline{O}|$

(Willmott et al., 2012)

Fig. 4. Schematic diagram of the seasonal differences in SST future changes.

Table 2. Future changes in SST (°C) simulated by CMIP6 (7). Blue is February and red is August.

	SSP1-2.6			SSP5-8.5			
	2021-2040	2041-2060	2081-2100	2021-2040	2041-2060	2081-2100	
East Asia	Feb: 0.76	1.21	1.32	0.98	1.64	3.69	
	Aug: 1.19	1.71	1.73	1.38	2.32	4.67	
East/Japan Sea	0.87	1.49	1.63	1.22	2.01	4.56	
	1.60	2.33	2.54	1.91	3.01	6.13	
East China Sea	0.87	1.24	1.35	0.99	1.74	3.53	
	1.04	1.48	1.47	1.19	2.01	4.00	
Yellow Sea	1.05	1.56	1.64	1.22	2.18	4.59	
	1.73	2.42	2.53	1.91	3.10	5.74	

- CMIP6 models with the top 16th were selected based on the agreement indices of the SST and 10m-wind.
- **Best CMIP6 models:** MPI-ESM1-2-HR ✓ MRI-ESM2-0
- ✓ UKESM1-0-LL EC-Earth3 ACCESS-ESM1-5 CanESM5 KACE-1-0-G
- Significant bias: the polar front such as the mixed water region (interfrontal zone)
- Fig. 2. SST bias of annual average from 1995 to 2014 in CMIP6 (30) models

Fig. 5. Inter-model standard deviation in SST changes (future – historical) between best seven CMIP6 models. SSP1-2.6 on the left and SSP5-8.5 on the right, in order near Future (2021-2040), middle future (2041–2060), and distant future (2081–2100). The historical period is 1995–2014.

Conclusions

Yellow sea and mixed water region (interfrontal zone): Large uncertainty between climate model due to coarse resolution

- \succ The best seven CMIP6 models, selected by the Index of agreement, project the increased SST by <u>1.2 to 4.7°C</u> in summer and <u>0.8 to 3.7°C</u> in winter. This enhanced summer warming is principally attributed to the thinning of summer MLDs, which could accelerate warming by capturing heats within the shallower layer.
- \succ The inter-model difference in the future SST changes is large in the mixed water region. This large deviation suggests less reliability in future projection over the mixed water region, presumably due to the coarse resolution of the CMIP6 ocean models.