Automation of rapid zooplankton assessment for use in ecosystem based fisheries management

David G. Kimmel, Deana C. Crouser, Paweł Kaźmierczak, Barbara Kłopotowska, Mirosław Ciupiński, and Hongsheng Bi

Outline

- Applying zooplankton information to fisheries management – the problem
- Rapid Zooplankton Assessment (RZA)
- An automated approach to the RZA a work in progress
- Future work and some parting thoughts

Fisheries management in Alaska

60,000 jobs in the seafood industry
 \$1.7 billion, 31% of the US total revenue

Annual cycle

Ecosystem assessment

Recruitment Processes Alliance

 5 large marine ecosystems = a lot of samples ECOSYSTEM PERSPECTIVE

Rapid Zooplankton Assessment

- The problem: zooplankton data were not being applied to fishery management during the annual cycle
 - Collecting zooplankton is easy, turning a zooplankton sample into meaningful data is hard
 - Expertise and Time
- The solution
 - A rapid sort on board the ship to approximate the standing stock of important zooplankton groups

RZA methods

Large copepods > 2 mm

Calanus, Neocalanus

Small copepods < 2 mm

Pseudocalanus, Acartia, Oithona

Euphausiids < 15 mm

Thysanoessa inermis, T. raschii

1111123

Bayesian analysis of RZA

		Model	Intercept	Slope	r ²	EPLD
30000 - 20000 - 10000 - 0 -		Base + Sorter (Random, Fixed)	8.33	0.65	0.63	0
		Base + Sorter (Random)	8.27	0.61	0.62	-7.2
		Base + LME	8.13	0.64	0.59	-32.7
		Base	8.23	0.65	0.59	-33.2
	Predicted	Base + Season	8.26	0.66	0.59	-33.4

RZA Results

Automating the RZA

Remove sorter impact on RZA

Reduce time to produce RZA data

Provide an easy to use tool to produce RZA in other Large Marine Ecosystems

Produce additional information (size, lipid content) for context

Training library

Poland Sorting and Identification Center

LabelMe

Algorithm flow –Scene model

Detect background

ShuffleNet

Dark background

Light background

Algorithm flow – Mask R-CNN

Mask Region Based Convolutional Neural Network

Training – Scene classification

Training – Object classification

Initial training

Current training

Video of software in action

[09/14 16:54:33 d2.data.datasets.coco]: Loaded 928 images in COCO format from D:/MaskRCNN/datasets/Poland_data_Model/object_submodels_Poland202207\Dark_BG_ 202207_instances_train.json

[09/14_16:54:33_d2.data_datasets.coco]: Loaded 633 images in COCO format from D:/MaskRCNN/datasets/Poland_data_Model/object_submodels_Poland202207\Light_BG _202207_instances_train.json Number of image file: 11

Number of image file. If
Image(ACARTIA_C4-C1_4X_2 (1).JPG) is being processed!

D:/MaskRCNN/datasets/Poland_data_Model/scene_model_202205/best.pth

GPU IS AVAILABLE

Classification

Counts

Conclusions and Future Work

Based on beginning set of training data we have a viable classifier for the RZA categories

- Annotate and train, annotate and train, annotate and train...
- Develop streamlined image generation at sea
 - Currently, using microscope, but could improve
- How robust is the algorithm?
 - We plan to add in field generated images, which will require more training, adjustments, a new algorithm?