

Mechanistic Modeling of Dynamics and Blooms of Jellyfish in the Northern Gulf of Mexico

Chengxue Li and Hui Liu Texas A&M University at Galveston, Galveston, TX, USA

PICES 2022 Annual Meeting, September 27, 2022, Busan, Korea

Worldwide Jellyfish Issues

Condon et al. (2013)

Jellyfish blooms and climate-related changes in environmental conditions, overfishing, eutrophication, invasions, and coastal constructions (Graham, 2001; Purcell, 2005; Lynam et al., 2006; Attrill et al., 2007; Brodeur et al., 2008; Gibbons and Richardson, 2009; Miller and Graham, 2012; Condon et al., 2013).

Global Agenda Environment and Natural Resource Security The Ocean Biotechnology

Jellyfish are taking over the world – and climate change could be to blame

Dense Jellyfish Observed Off Texas Coast

Carlos .

Modeling Complex Lifecycle of Aurelia spp.

- Strobilation is key for the dense aggregations of medusae in the water column.
- Environmental variables such as water temperature, salinity, and zooplankton density play an important role in regulating jellyfish life history.
- The complex interplay between these environmental factors limits our ability to understand the triggering mechanisms of jellyfish blooms.

Mechanistic Modeling (Individual-based Models)

- Better understanding the mechanisms driving population dynamics of zooplankton.
- Simulation and prediction of population dynamics in a changing climate.
- Contribute to understandings of fisheries production and ecosystem function.

Effects of variability among individuals on zooplankton population dynamics under environmental conditions

Rujia Bi^{1,2,*}, Hui Liu¹

¹Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77553, USA

²Present address: Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 24061, USA

Journal of Marine Systems 228 (2022) 103705

Exploring cosmopolitan jellyfish (*Aurelia* spp.) bloom dynamics and ecological implications in subtropical waters with mechanistic dynamic modeling

Chengxue Li, Hui Liu

Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77553, USA

Individual-based Modeling (IBM)

- It incorporates species life history details to track population dynamics in response to biotic and abiotic environmental factors (Bi and Liu 2017).
- It considers the main biological processes of jellyfish including growth, development, sexual reproduction, asexual reproduction (budding and strobilation), and mortality.
- Environmental variables (surface water temperature, bottom water temperature, bottom salinity, zooplankton density) included as drivers controlling the bioenergetics of jellyfish.

Parameters with ranges and default values used in the IBM.

Compilation of Environmental Data

Data Source: Southeast Area Monitoring and Assessment Program (SEAMAP)

Study Area and Model Domain

- Spatial domain: areas with depth < 200 m.
- Spatial resolution: 1/2° latitude/longitude
- Number of grids: 117
- Three sub-regions: NW GoM (Texas), NC GoM (Louisiana-Alabama), NE GoM (Florida)

Source: Pew Charitable Trusts, 2020

Model Validation

Comparisons of observations (left-black dots) and simulations (right-circle plus) for the appearance and distribution of *Aurelia* medusae from 2006 to 2010.

Field observations of *Aurelia* medusa abundance (left) and biomass (right) compared with the simulations from 1995 to 2010. The error bar presents the standard error (SE).

Simulated Bloom Spots

Predicating Hotspots of Jellyfish Abundance and Biomass

<u>East Louisiana</u>

- 1. Nutrients from the Mississippi-Atchafalaya River system (Rabalais et al. 2002)
- Mississippi Bight
- Nutrients from the Mobile Bay system (Lehrter, 2008), and the wind-driven eastward dispersal of the Mississippi River discharge (Biggs et al. 2008; O'Connor et al. 2016)
- South Texas
- 1. Nutrients from seasonal downcoast transport of the Mississippi-Atchafalaya River discharge (Nowlin et al. 2005)
- Nutrients from seasonal winddriven upwelling (Cochrane and Kelly, 1986; Zavala-Hidalgo et al. 2006; Hetland and Campbell, 2007)

Blooms in Abundance ≠ Blooms in Biomass

Abundance (ind. 1000m^-3)

Biomass (µg C m^-3)

Case Scenario in 2008

Mismatch in the bloom timing between the peak of abundance in mid-August and the peak of biomass in early October.

This raised an interesting question to further understand the ecological relevance of jellyfish blooms in pelagic food-web dynamics and in biogeochemical cycling.

Detecting Triggers of GoM Jellyfish Blooms

Table 5. Coefficients of multiple linear regression models for abundance and biomass of *Aurelia* spp. Relative contribution of each predictor was estimated by dominance analysis.

Dependent Variable	Independent Variables	Estimated Coef.	Standard Error	P-value	Contribution
Abundance (ind. 1000 m ³)	Zooplankton biomass	1.979	0.063	< 0.001 ***	0.359
	Surface water temperature	-1.849	0.584	< 0.001 **	0.030
	Bottom water temperature	-0.555	0.301	0.066	0.018
	Salinity	1.577	0.361	< 0.001 ***	0.006
Biomass (mg C m ³)	Zooplankton biomass	0.109	0.005	< 0.001 ***	0.216
	Surface water temperature	-0.147	0.047	< 0.01 **	0.025
	Bottom water temperature	-0.093	0.024	< 0.001 ***	0.012
	Salinity	0.062	0.029	< 0.05 *	0.005

Note: Subscripts represent statistically significant differences: * = p < 0.05, ** = p < 0.01, *** = p < 0.001

Bottom-up control is the main driver triggering jellyfish blooms in the GoM.

Water temperature has negative effects because

- summer heat stress in subtropical regions suppresses the growth of medusae.
- winter warm temperatures cause mortality of benthic polyps and limit ephyra production.

Summary

- 1. Jellyfish population dynamics show large interannual variations from 1995 to 2010.
- 2. Coastal waters off South Texas, East Louisiana, and Mississippi Bight appear to be potential bloom hotspots with distinctive driving processes.
- 3. Bloom timings defined in abundance and biomass are worthy of further consideration.
- 4. Jellyfish blooms in the GoM seem to be triggered by the bottom-up control. Jellyfish are taking over the seas, and it might be too late to stop them

QUARTZ