Improved deepsea biodiversity assessments inform sustainable management of seamounts

Telmo Morato

& many others

Okeanos, University of the Azores, Portugal

GOVERNO

ALC FURCHER

MISSION STATEMENT

- Increase our **understanding**
 - of the **deep-sea** in the north Atlantic & Azores
 - in a changing planet,
 - to inform **conservation** & **sustainable use**
 - for current and **future** generations

IMPROVED DEEP-SEA BIODIVERSITY ASSESSMENTS INFORM SUSTAINABLE MANAGEMENT Telmo Morato: UNIVERSITY OF THE AZORES, PORTUGAL

Xatias

Ocean basin- and regional- scales

WORKSHOP 1 PICES ANNUAL MEETING 24-25 SEPTEMBER 2022, BUSAN, KOREA

IMPROVED DEEP-SEA BIODIVERSITY ASSESSMENTS INFORM SUSTAINABLE MANAGEMENT Telmo Morato: UNIVERSITY OF THE AZORES, PORTUGAL

SEA

GEOMORPHOLOGY OF THE SEABED

Azores EEZ (baseline information)

Geomorphology:

Compile/collect multibeam bathymetry data Improve spatial definition of geomorphological structures (e.g., seamounts) Identify Geomorphology management units Support analyses of small and meso scale species distribution patterns Support development of HSMs Plan field-work

Environmental data:

Compile/collect environmental data Identify meso- and small- scale water masses properties

Identify small-scale current patterns

IMPROVED DEEP-SEA BIODIVERSITY ASSESSMENTS INFORM SUSTAINABLE MANAGEMENT Telmo Morato: UNIVERSITY OF THE AZORES, PORTUGAL

In 2008, a total of 63 large and 398 small seamount-like

features were mapped and described in the Azores EEZ

Vol. 357: 17–21, 2008 doi: 10.3354/meps07268	MARINE ECOLOGY PROGRESS SERIES Mar Ecol Prog Ser	Published April 7
---	---	-------------------

Abundance and distribution of seamounts in the Azores

Telmo Morato^{1,2,*}, Miguel Machete¹, Adrian Kitchingman², Fernando Tempera¹, Sherman Lai², Gui Menezes¹, Tony J. Pitcher², Ricardo S. Santos¹

Now we know that some of these structures are **small** ridges and adopted the concept of **geomorphologic** structures, instead of seamounts

deep-sea biodiversity and inform management

Gigante area

Mid Atlantic Ridge

deep-sea biodiversity and inform management

Gigante area

Mid Atlantic Ridge

deep-sea biodiversity and inform management

deep-sea biodiversity and inform management

IMPROVED DEEP-SEA BIODIVERSITY ASSESSMENTS INFORM SUSTAINABLE MANAGEMENT Telmo Morato: UNIVERSITY OF THE AZORES, PORTUGAL

Identify Geomorphology management units

Representativity

An automated cluster

analysis of the entire Atlantic seafloor environment, based on eight global datasets and their derivatives

> The Atlantic Ocean landscape: A basinwide cluster analysis of the Atlantic near seafloor environment

Atlantic Seabed Areas

- SBA I: Oxic, mostly flat with regionally thick sediment cover sedimented, current influenced regions with low seasonal change
- SBA II: MAR spreading centre including abyssal ridges, trenches and continental slopes
- SBA III: Deep, cold, fresh & oxygen depleted abyssal plain with increased bottom current velocity
- SBA IV: Shallow, warm, nutrient-rich and saline deeper shelf zones with thick sediment cover, strong currents and strong local and seasonal changes

- SBA V: Small & regional, cold and fresh deep water influenced areas in North & South Atlanti at medium depth, with locally increased currents and current seasonal change
- SBA VI: Central deep Atlantic cool, nutrient-depleted area with
- very weak currents, covering some abyssal elevations and sinks
- SBA VII: Small & regional, deep, flat, sedimented oxic region with strong currents and high seasonal current change
- SBA VIII: Wider region around MAR covering new seafloor, faults and fracture zones, with extremely low sediment cover, no currents, very low oxygen and temperature
- SBA IX: Nutrient-rich, fresh, warm water continental shelf regions with thick sediment cover and strong seasonal fluctuations

WORKSHOP 1 PICES ANNUAL MEETING 24-25 SEPTEMBER 2022, BUSAN, KOREA

IMPROVED DEEP-SEA BIODIVERSITY ASSESSMENTS INFORM SUSTAINABLE MANAGEMENT Telmo Morato: UNIVERSITY OF THE AZORES, PORTUGAL

Lessons learned

Establish synergies and collaboration for bathymetry surveys and data sharing

WORKSHOP 1 PICES ANNUAL MEETING 24-25 SEPTEMBER 2022, BUSAN, KOREA

IMPROVED DEEP-SEA BIODIVERSITY ASSESSMENTS INFORM SUSTAINABLE MANAGEMENT Telmo Morato: UNIVERSITY OF THE AZORES, PORTUGAL

DEEP-SEA BIODIVERSITY (New explorations)

0

<-___1,300 km

THE AZORES

VAST

1 MILLION KM² 10X TERRESTRIAL MAINLAND PORTUGAL 2.5X TERRESTRIAL MAINLAND CALIFORNIA, USA

DEEP

AVERAGE DEPTH APPROX. 3,000M

800

GLEX 2021 09TH JULY 2021

•

IMPROVED DEEP-SEA BIODIVERSITY ASSESSMENTS

INFORM SUSTAINABLE MANAGEMENT CHALLENGE

WORKSHOP 1 PICES ANNUAL MEETING 24-25 SEPTEMBER 2022, BUSAN, KOREA

IMPROVED DEEP-SEA BIODIVERSITY ASSESSMENTS INFORM SUSTAINABLE MANAGEMENT Telmo Morato: UNIVERSITY OF THE AZORES, PORTUGAL

Lessons learned

Set a well-defined SMART target for deep-sea explorations

Specific, measurable, achievable, realistic and time-bounded

COLLABORATION TO ACCESS EMEPC ROV LUSO VIDEO DATABASE

THE **BLUE AZORES** 2018 EXPEDITION

FIRST REAL COLLABORATION WITH **NIOZ** FOR ACCESS TO SHIP TIME

Very time-consuming

Hence, only few developed countries have the technical/financial means to explore the deep sec

Guiding principles for the design of the Azor drift-cam

WORKSHOP 1 PICES ANNUAL MEETING 24-25 SEPTEMBER 2022, BUSAN, KOREA

IMPROVED DEEP-SEA BIODIVERSITY ASSESSMENTS INFORM SUSTAINABLE MANAGEMENT Telmo Morato: UNIVERSITY OF THE AZORES, PORTUGAL

2. One control of the strate of the strate of the cause fallowing the trade of the control of t

INFORM SUSTAINABLE MANAGEMENT Telmo Morato: UNIVERSITY OF THE AZORES, PORTUGAL

More clips from different seamounts surveyed with the Azor drift-cam can be watched in our group's Youtube channel https://www.youtube.com/channel/UCrUCCk9866Ym8voq7ZwwZoQ

IMPROVED DEEP-SEA BIODIVERSITY ASSESSMENTS

INFORM SUSTAINABLE MANAGEMENT Telmo Morato: UNIVERSITY OF THE AZORES, PORTUGAL

More clips from different seamounts surveyed with the Azor drift-cam can be watched in our group's Youtube channel https://www.youtube.com/channel/UCrUCCk9866Ym8voq7ZwwZoQ

IMPROVED DEEP-SEA BIODIVERSITY ASSESSMENTS INFORM SUSTAINABLE MANAGEMENT Telmo Morato: UNIVERSITY OF THE AZORES, PORTUGAL

And other curious animals...

More clips from different seamounts surveyed with the Azor drift-cam can be watched in our group's Youtube channel https://www.youtube.com/channel/UCrUCCk9866Ym8yoq7ZwwZoQ

IMPROVED DEEP-SEA BIODIVERSITY ASSESSMENTS INFORM SUSTAINABLE MANAGEMENT Telmo Morato: UNIVERSITY OF THE AZORES, PORTUGAL

WORKSHOP 1 PICES ANNUAL MEETING 24-25 SEPTEMBER 2022, BUSAN, KOREA

IMPROVED DEEP-SEA BIODIVERSITY ASSESSMENTS INFORM SUSTAINABLE MANAGEMENT Telmo Morato: UNIVERSITY OF THE AZORES, PORTUGAL

Lessons learned

Move to cost-effective deep-sea exploration and expand the spatial coverage of deep-sea data

HIGHLIGHTS OF RECENT DEEP-SEA EXPLORATION

IMPROVED DEEP-SEA BIODIVERSITY ASSESSMENTS INFORM SUSTAINABLE MANAGEMENT Telmo Morato: UNIVERSITY OF THE AZORES, PORTUGAL

HIGHLIGHTS OF RECENT DEEP-SEA EXPLORATION

Discovered several locations in the Azores shallower than previously thought

Two areas reach depths susceptible to be fished (<600 m), but since it has remained unknown it can be **considered intact**

Fundamental for understanding what ecosystems looked like before they were impacted

May be considered as **reference sites** and priority areas for conservation

HIGHLIGHTS OF RECENT DEEP-SEA EXPLORATION

The Azores is an **hotspot of cold-water coral** biodiversity in the whole Atlantic ocean

Mid-Atlantic Ridge supports more life and diversity than previous studies indicated.

IMPROVED DEEP-SEA BIODIVERSITY ASSESSMENTS INFORM SUSTAINABLE MANAGEMENT Telmo Morato: UNIVERSITY OF THE AZORES, PORTUGAL

HIGHLIGHTS OF RECENT DEEP-SEA EXPLORATION

Discovered **new deep-sea species**; e.g. **Epizoanthus martinsae** lives in association with black corals

Also **new communities**, biotopes, and species associations

Endemic species with limited spatial distributions

HIGHLIGHTS OF RECENT DEEP-SEA EXPLORATION

Discovered the **densest garden of bubblegum coral** (Paragorgia johnsoni)

NATURE NOTES

Ecology and Evolution WILEY

Dense cold-water coral garden of *Paragorgia johnsoni* suggests the importance of the Mid-Atlantic Ridge for deep-sea biodiversity

HIGHLIGHTS OF RECENT DEEP-SEA EXPLORATION

Discovered the largest aggregation of **black corals** across the Atlantic

These corals can live for several **1,000 years**

Equivalent to the **redwood forests** (some of the oldest trees) that still persist on the planet

GLEX 2021 09TH JULY 2021

IMPROVED DEEP-SEA BIODIVERSITY ASSESSMENTS INFORM SUSTAINABLE MANAGEMENT HIGHLIGHTS OF EXPLORATION

HIGHLIGHTS OF RECENT DEEP-SEA EXPLORATION

Discovered the new low temperature Luso hydrothermal vent

Rich in iron and hydrogen

Play an important role in **fuelling local productivity**

WORKSHOP 1 PICES ANNUAL MEETING 24-25 SEPTEMBER 2022, BUSAN, KOREA IMPROVED DEEP-SEA BIODIVERSITY ASSESSMENTS INFORM SUSTAINABLE MANAGEMENT Telmo Morato: UNIVERSITY OF THE AZORES, PORTUGAL

HIGHLIGHTS OF RECENT DEEP-SEA EXPLORATION

We also found aggregations of the **longlived orange roughy** and cardinalfish

The **trawl ban** within the Azores (2005), has had positive effects for these species and the habitats they are associated with

Identified essential fish habitats

WORKSHOP 1 PICES ANNUAL MEETING 24-25 SEPTEMBER 2022, BUSAN, KOREA

IMPROVED DEEP-SEA BIODIVERSITY ASSESSMENTS INFORM SUSTAINABLE MANAGEMENT Telmo Morato: UNIVERSITY OF THE AZORES, PORTUGAL

VULNERABLE MARINE ECOSSYSTEMS

Database on existing deep-sea biodiversity data in the N Atlantic

Termo Adexandre Pernandes Moraso Gomes						PLA.	a manage in	ABASE TOOL	TERMAL DATA DAT	CREATE EX	NOME	
	$\equiv \in \mathcal{H}^{-}$		- 11	ibri	Replace Ca	∑ Totals	C New	Selection *	2 Ascending		1 20	1
		= = 04		7 U A	Colorty R	Speling Find	Refresh	Advanced -	🗼 Descending 🎦	File	10 - 10 CA	Pi
			_	· · ·	, seen -	More -	All - X Delete	Toggle Filter	2 _# Remove Sort ▼	THE PART NEW		
		ting	Text Format		ind	s P	Record		Sort & Filter	d 6	Cipbo	15
							atureList	.e 🛄 Liter	GridGeoreference	CruiseList	ContactL	
		POSSIE -	· MAIN TAX	 B/P 	SOURCE	of . PROJECT/DA .	 PUBLICATE 	 AREA 	DOI		ID	
rothermal vents on the Mohn Ridge (Nor	The fauna of I	HV	MAF	В	Article	010 BIODEEP		MAR	1000903147450	10.1080/1745:		
al vent community of a new deep-sea field	The hydrothe	HV	MAE	В	Article	011 BIOCEN		MAR	315410000731	10.1017/S0025		
anal invertebrate assemblages from bathy	Trawled mega	U		В	Article	013 ECOMAR		MAR	2013.02.003	10.1016/j.dsr2		
d abyssal distribution of coral in the axial	Lower bathya	U	SI	В	Article	012 N/A		MAR	011.11.009	10.1016/j.dsr.2		
ery of the first known deep-sea hydrothe	Moytirra: Dise	HV	MI	В	Article	013 VENTURE		MAR	20243	10.1002/ggge.		
-dwelling enteropneusts from the Mid-At	Deep-sea surf	U	MI	В	Article	013 ECOMAR		MAR	2013.05.009	10.1016/j.dsr2		
3000 m) fish assemblage structure over t	Deep-pelagic	U	F	в	Article	013 ECOMAR		MAR	2012.09.003	10.1016/j.dsr2		9
old-water corals in the Whittard Canyon, P	Distribution o	CA	SI	В	Article	013 HERMES		MAR	2013.03.036	10.1016/j.dsr2		•
ern fulmar from a Scottish nesting site to *	Tracking a no	A	MAF		Article	013 ECOMAR		MAR	2013.04.011	10.1016/j.dsr2		1
of autumn migration routes and destination	First indicatio	TS	MAE	P	Article	015 N/A		MAR	12144	10.1111/mms.	1	2
and catch rates of deep water fish along t	The distribution	A	MAF	BeP	Article	001 EC FAIR		MAR	-7836(01)00253-3	10.1016/\$0165		
p-sea pelagic fish assemblages in relation *	Structure of d	U	MAF	BeP	Article	004 N/A		MAR	004.03.004	10.1016/j.dsr.2	1	
rals and antipatharians show no evidence	Deep-sea octo	U	SI	в	Article	009 N/A		MAR	08318	10.3354/meps		
dance, biomass and diversity patterns at *	Polychaete ab	U	MI	В	Article	013 ECOMAR		MAR	2013.04.010	10.1016/j.dsr2	1	
collected in the vicinity of the Sub-Polar F	Midwater fish	U	F	P	Article	013 ECOMAR		MAR	2013.08.001	10.1016/j.dsr2		
fishes of Charlie Gibbs Fracture Zone reg	Bathval deme	U	F	В	Article	013 ECOMAR		MAR	2013.08.012	10.1016/j.dsr2	1	<u>د</u>
fishes of Charlie-Gibbs Fracture Zone reg	Bathval deme	U	F	В	Article	013 ECOMAR		MAR	2013.08.002	10.1016/j.dsr2	1	5
fishes of the Charlie-Gibbs Fracture Zong	Bathyal deme	U	F	В	Article	013 ECOMAR		MAR	2013.08.013	10 1016/i dur2	1	1
vertebrate merabenthos from 500 to 41	Biomass of th	U	MAE	В	Article	986 N/A		MAR	28656	10.1007/8F004		
ture and biomass of the benthic commun	Variation in st	11	MAE	B	Article	ODD ELIMELL		MAR	197121	10 3354/mens		
and latitudinal distribution of deep-sea sci	Denth zonatio	U.	F	B	Article	005 MAR-ECO		MAR	319263	10.3354/mens		
invertebrate abyssal megafauna in the No	Variations in t	U	MAE	B	Article	994 N/A		MAR	0637/94/90100-7	10 1016/0967-		
aior size groups of benthic fauna and trop	Density of the	U.	MAE	B	Article	989 IFREMER DEEP-		MAR	4089785076064	10 1357/0022		
for selecting cold-water coral protection	Seabed mann	CA	51	B	Article	DO9 ECOVUL/ARPA		MAR	s/fsn170	10 1093/cesin		
for selecting cold mater coral protection.	A shi s as hali sa	CA.			Autola	01211/1				10.1016/		

Telmo Alexandre Fernandes Morato Gomes -						FIELDS TABLE	DATABASE TOOLS	CREATE EXTERNAL DATA	LE HOME
	FE -		- 11	Calibri	als	C New Σ Tot	g TSelection ·	Y 2 Ascendir	A Cut
		- 2	2 · A · = = :	B/UA-	fing Find Schort -	tefresh Save V Spe	ng 🛅 Advanced * 💡	y Filter Descend	Paste of Lorma
			_		ie - Si Sener	All - X Delete - III Mo	iort 🝸 Toggle Filter	2, Remove	
			Test Formatting		Find	Records	k Filter	d 6 Sort	s Clipboard
								CruiseList	ContactList
YEAR • LINK1 • LINK2 • CC	END Y	END DATE 🔻	ST YEAR 🔹	ST DATE +	PROJECT1 +	 INSTITUTE 	 CRUISE CD/NM 	 ResearchVessel 	ID
2009 https://www.st https://www.bc	19	09/09/2009	2009	01/08/2009	ECOMAR	BODC	JC037	1 James Cook	
2007 https://www.st http://www.box	17	18/08/2007	2007	13/07/2007	ECOMAR	BODC	JC011	2 James Cook	
2007 http://www.ifrehttp://www.int-	7	06/04/2007	2007	26/02/2007	GEODE	IFREMER	SERPENTINE	3 Pourquoi pas	
2006 http://www.ger	16	18/06/2006	2006	01/06/2006		IMR	BIODEEP	4 G.O. Sars	
2008 https://www.bc	18	28/06/2008	2008	23/05/2008		BODC	JC024	5 James Cook	
2010 https://www.st https://www.bc	.0	03/07/2010	2010	26/05/2010	ECOMAR	BODC	JC048	6 James Cook	•
2011	1	04/08/2011	2011	11/07/2011	VENTURE	MARINE INSTITUTE	VENTURE	7 Celtic Explorer	
2004 https://www.im	м	05/08/2004	2004	04/07/2004	MAR-ECO	haIMR	Leg 2. AZORES - C	8 G.O. Sars	
2004 https://www.im	14	03/07/2004	2004	05/06/2004	MAR-ECO	20 IMR	Leg1. ICELAND-A3	9 G.O. Sars	
2007 https://www.bc	17	07/07/2007	2007	22/06/2007	HERMES	BODC	JC010	10 James Cook	
2009 https://www.bc	19	28/07/2009	2009	20/06/2009	HERMIONE	BODC	JC036	11 James Cook	
2009 http://www.nef	19	17/07/2009	2009	12/06/2009	MAR-ECO	NOAA	HB82009 CGFZ	12 Henry B. Bigelow	
1993 http://www.cor	13	08/10/1993	1993	01/09/1993	EC FAIR PROJECT 95	COMMERCIAL	RAMOEN1993	14 Ramoen	
1996 http://www.mc	16	21/09/1996	1996	28/08/1996	EC FAIR PROJECT 95	COMMERCIAL	LORAN1996	15 Loran	۲
1996 http://dabred.ir	16	01/05/1996	1996	01/04/1996	EC FAIR PROJECT 95	COMMERCIAL	BORGARIN1995	16 Borgarin	
1997 http://oar.mari	17	14/08/1997	1997	02/08/1997	EC FAIR PROJECT 95	COMMERCIAL	SKARHEIM1997	17 Skarheim	
1982 http://www.scie	12	20/06/1982	1982	05/06/1982		BLE	WH052	18 Walther Herwig III	
2003 http://www.lib.	13	19/07/2003	2003	11/07/2003	Mountains in the Se	SeNOAA	Mountains in the	19 Atlantis	
2005 http://www.lib.	15	03/10/2005	2005	06/08/2005	DEEP Atlantic Steppi	IPENOAA	North Atlantic Ste	20 Ronald H. Brown	
1991 http://www.ifrehttp://www.ob	1	22/02/1991	1991	09/01/1991	EUMELI	IFREMER	EUMELI 2	21 L'Atlante	۲
1991 http://www.ob-http://www.ob-	1	24/10/1991	1991	14/09/1991	EUMELI	IFREMER	EUMELI 3	22 L'Atlante	
1992 http://www.ob-http://www.ob-	2	30/06/1992	1992	18/05/1992	EUMELI	IFREMER	EUMELI 4	23 L'Atlante	
1992 http://www.ob-http://www.ob-	2	30/12/1992	1992	07/12/1992	EUMELI	IFREMER	EUMELI 5	24 Le Suroit	
1989 http://www.ob	19	28/07/1989	1989	01/07/1989	EUMELI	IFREMER	EUMELI 1	25 Charcot	۲
1982 https://www.bc	12	12/02/1982	1982	12/02/1982		BODC	CH3/82	26 Challenger	

OBIS and published data for benthic VME indicator taxa (WGDEC, 2016)

- ECS Submissions
- World's EEZ

A multi-criteria assessment method for identifying VME

Taxa-dependent spatial method VME indicator records \rightarrow VME index Data quality \rightarrow confidence index Bona Fide VME High Medium Low 50"N 2 60°W

A Multi Criteria Assessment Method for Identifying Vulnerable Marine Ecosystems in the North-East Atlantic

🎆 Telmo Morato¹⁷, 🚺 Christopher K. Pham¹, 🗾 Carlos Pinto², 🔝 Neil Golding³, 📃 Jeff A. Ardron⁴, 🔄 Pablo Durán Muñoz⁵ and 💽 Francis Neat⁵

North Atlantic Basin-Scale Multi-Criteria Assessment Database to Inform Effective Management and Protection of Vulnerable Marine Ecosystems

Telmo Morato^{1,2*}, Christopher K. Pham^{1,2}, Laurence Fauconnet^{1,2}, Gerald H.
 Taranto^{1,2}, Giovanni Chimienti^{3,4}, Frik Cordes⁵, Carlos Dominguez-Carrió^{1,2}, Pablo Durán Muñoz⁶, Hronn Egilsdottir⁷, José-Manuel González-Irusta^{1,2,8}, Anthony Grehan⁹, Dierk Hebbeln¹⁰, Lea-Anne Henry¹¹, Georgios Kazanidis¹¹, Ellen Kenchington¹², Lenaick Menot¹³, Tina N. Molodtsova¹⁴, Covadonga Orejas¹⁵, Berta Ramiro-Sánchez^{11,14}, Manuela Ramos^{1,2}, J. Murray Roberts¹¹, Luís
 Rodrigues^{1,2}, Steve W. Ross¹⁷, José L. Rueda¹⁸, Mar Sacau⁶, David Stirling¹⁹ and Marina Carreiro-Silva^{1,2}

atias

A multi-criteria assessment method for identifying VME

Taxa-dependent spatial method

VME indicator records \rightarrow VME index

Data quality \rightarrow confidence index

VME Indices + other data (fishing)

 \rightarrow Categorisation for conservation

Proportion of 20% 10%

0%

Low/Low Low/High High/Low High/High VME index / Fishing intensity

LOW VME

LOW CATCH HIGH CATCH

Fishing effort

LOW VME

REGIONAL SCALE APPROACH

Vulnerable Marine Ecossystems

Unequivocal Vulnerable Marine Ecosystems were defined as **areas** that have been scientifically **explored**, **described** and that **meet the FAO criteria** (FAO, 2009) for defining VMEs.

- Known hydrothermal vents
- Vulnerable benthic communities; cold-water coral gardens or sponge grounds

WORKSHOP 1 PICES ANNUAL MEETING 24-25 SEPTEMBER 2022, BUSAN, KOREA

IMPROVED DEEP-SEA BIODIVERSITY ASSESSMENTS INFORM SUSTAINABLE MANAGEMENT Telmo Morato: UNIVERSITY OF THE AZORES, PORTUGAL

HABITAT SUITABILITY MODELS

Predicted spatial distribution of biodiversity in the North Atlantic

Habitat suitability models were developed at regional case study scales and at ocean-basin

Predicted spatial distribution of biodiversity in the North Atlantic actas

Ocean-basin scale

Species: six cold-water corals and six deep-sea fish

Modelling methods: Ensemble approach (GAM, RF, Maxent)

scale

°0'0"N

30°0'0"N

Coord. Syst. GCS WGS 1984

Datum: WGS 1984 Units: Degree

Predicted spatial distribution of biodiversity in the North Atlantic actas

Ocean-basin scale HSM are valuable tools for evaluating the potential distribution of deep-sea benthic species at large scale, and to **identify** broad areas of conservation or blue growth importance

scale

Dcean-based

Predicted spatial distribution of biodiversity in the North Atlantic actas

Regional scale

There are **obvious differences** between Ocean-base and Regional HSM outputs

IMPROVED DEEP-SEA BIODIVERSITY ASSESSMENTS

INFORM SUSTAINABLE MANAGEMENT Telmo Morato: UNIVERSITY OF THE AZORES, PORTUGAL

IMPROVED DEEP-SEA BIODIVERSITY ASSESSMENTS

INFORM SUSTAINABLE MANAGEMENT Telmo Morato: UNIVERSITY OF THE AZORES, PORTUGAL

WORKSHOP 1 PICES ANNUAL MEETING 24-25 SEPTEMBER 2022, BUSAN, KOREA

IMPROVED DEEP-SEA BIODIVERSITY ASSESSMENTS INFORM SUSTAINABLE MANAGEMENT Telmo Morato: UNIVERSITY OF THE AZORES, PORTUGAL

Lessons learned

Ocean-basin scale HSM to identify broad areas of conservation interest

Regional HSM help the implementation of area-based management tools at a finer scale

WORKSHOP 1 PICES ANNUAL MEETING 24-25 SEPTEMBER 2022, BUSAN, KOREA

IMPROVED DEEP-SEA BIODIVERSITY ASSESSMENTS INFORM SUSTAINABLE MANAGEMENT Telmo Morato: UNIVERSITY OF THE AZORES, PORTUGAL

CLIMATE PROJECTIONS

WORKSHOP 1 PICES ANNUAL MEETING 24-25 SEPTEMBER 2022, BUSAN, KOREA IMPROVED DEEP-SEA BIODIVERSITY ASSESSMENTS INFORM SUSTAINABLE MANAGEMENT Telmo Morato: UNIVERSITY OF THE AZORES, PORTUGAL

The **deep sea** plays a critical role in global **climate regulation** through uptake and storage of heat and carbon dioxide

"warming, acidification and deoxygenation of deep waters"

Background

- However, this regulating service causes **warming**,
- acidification and
- deoxygenation of deep
- waters, leading to **decreased**
- food availability at the seafloor

Projected changes in environmental conditions at seafloor by 2100

Change in pH: -0.29 to -0.37

Food availability: -2 to -55%

Sweetman et al. (2017)

IMPROVED DEEP-SEA BIODIVERSITY ASSESSMENTS INFORM SUSTAINABLE MANAGEMENT TEIMO MORATO: UNIVERSITY OF THE AZORES, PORTUGAL

Background

Understanding how climate

change can lead to shifts in

deep-sea species distributions

is critically important in

developing management

measures

Global Change Biology

OPINION 🖞 Open Access 😨 🔅

Climate change considerations are fundamental to management of deep-sea resource extraction

Lisa A. Levin 🗙 Chih-Lin Wei, Daniel C. Dunn, Diva J. Amon, Oliver S. Ashford, William W. L. Cheung, Ana

Published: 24 June 2015

Options for managing impacts of climate change on a deep-sea community

Ronald E. Thresher 🔄, John M. Guinotte, Richard J. Matear & Alistair J. Hobday

Nature Climate Change 5, 635–639 (2015) Cite this article

Marine Policy Volume 87, January 2018, Pages 111-122

Climate change is likely to severely limit the effectiveness of deep-sea ABMTs in the North Atlantic INFORM SUSTAINABLE MANAGEMENT Telmo Morato: UNIVERSITY OF THE AZORES, PORTUGAL

The Approach

e.g. Lophelia pertusa

Ensemble modeling approach (Maxent, GAMs, Random Forest)

The Approach

e.g. Lophelia pertusa

Ocean Adaptation and Resilience, and cross-cutting approaches Friday, November 5, 2021 Telmo Morato: UNIVERSITY OF THE AZORES, PORTUGAL

Gain

OSS

Projected limited

climate refugia locations

in the North Atlantic by

2100

Should these areas be considered **priority areas for**

conservation?

fish species (RCP8.5)

and Sebastes mentella

An expansion for

(20% - 30%)

IMPROVED DEEP-SEA BIODIVERSITY ASSESSMENTS SUSTAINABLE MANAGEMENT Telmo Morato: UNIVERSITY OF THE AZORES. PORTUGAL

MSS

MSS

MSS

Latitudinal changes in deep-sea fishes

A shift in suitable

habitat for deep-sea

fishes of 2.0°-9.9°

towards higher

latitudes

MSS

WORKSHOP 1 PICES ANNUAL MEETING 24-25 SEPTEMBER 2022, BUSAN, KOREA

IMPROVED DEEP-SEA BIODIVERSITY ASSESSMENTS INFORM SUSTAINABLE MANAGEMENT Telmo Morato: UNIVERSITY OF THE AZORES, PORTUGAL

Lessons learned

Despite all the caveats, HSM can produce potentially useful projections of changes in the distribution of deepwater fish and invertebrate species WORKSHOP 1 PICES ANNUAL MEETING 24-25 SEPTEMBER 2022, BUSAN, KOREA

IMPROVED DEEP-SEA BIODIVERSITY ASSESSMENTS INFORM SUSTAINABLE MANAGEMENT Telmo Morato: UNIVERSITY OF THE AZORES, PORTUGAL

SPATIAL MANAGEMENT CONSERVATION PLANNING

INFORM SPATIAL PLANNING AND DECISION MAKING

Integrate available data into a comprehensive Systematic Conservation Planning approach at Ocean Basin and regional scales, for identifying priority areas in the deep-sea to:

Protect natural diversity, ecosystem structure, function, connectivity and resilience of deep-sea communities in a changing planet, while allowing the environmentally sustainable use of natural resources for current and future generations

INFORM SPATIAL PLANNING AND DECISION MAKING

Identification of **areas** of management

importance –

MARXAN approach

INFORM SPATIAL PLANNING AND DECISION MAKING

Identify overarching statement, Principles, Goals, Objectives

Identify overarching statement, Principles, Goals, Objectives

Overarching statement

Protect ecosystem structure, function, natural diversity, connectivity and resilience of deep-sea communities in the Azores in a changing planet, while allowing a socially equitable and environmentally sustainable use of natural resources for current and future generations

Overarch. Goal	Ecological Goals	Objectives
	Ensure protection of intact and restoration of degraded	• Ensure full protection (100%) of bona fide Vulnerable Marine Ecosystems by 2023
Ecosystem	Vulnerable Marine Ecosystems	• Protect at least 30% of known records of endemic, extremely long-lived, and reef engineers Vulnerable Marine Ecosystems indicators by 2023
structure		 Protect at least 15% of inferred Vulnerable Marine Ecosystems by 2023
	Maintain food-web structure and networks of trophic relationships	• No SMART objectives defined due to data gap
	Ensure protection of intact and restoration of essential deep habitats	• Protect a minimum of 75% of the known essential deep-sea habitats by 2023
	Ensure protection of intact and restoration of keystone and	 Ensure the identification of keystone and foundation species by 2025
Ecosystem function	foundation species	• Protect a minimum of 30% of the known keystone and foundation species distribution by 2028
	Ensure the long-term maintenance of biologically mediated processes	• No SMART objectives defined due to data gap
	Maintain functional diversity of deep-sea ecosystems	 No SMART objectives defined due to data gap

Spatial planning boundaries

Based on the "science-based principle" the spatial planning area was divided in: a "**data-rich** planning area" (<2,500m) and a "**data-poor abyssal** planning area".

Based on the "ecosystembased approach" principle and the representativity and replication criteria the planning areas were subdivided into 5 subareas

continue

Data-driven approach

Identify overarching statement, **Principles, Goals, Objectives**

Identify planning area and units

Compile and collect relevant data Identify knowledge gaps

🐼 OKEANOS 🛛

Scientific information used to address management goals and objectives

Objectives	
•Ensure full protection (100%) of bona fide Vulnerable Marine Ecosystems by 2023	•
• Protect at least 30% of known records of endemic, extremely long-lived, and reef	•
engineers considered Vulnerable Marine Ecosystems indicators by 2023	
 Protect at least 15% of inferred Vulnerable Marine Ecosystems by 2023 	•••
•(food-web structure objectives)	Data gap
• Protect a minimum of 75% of the known essential deep-sea habitats by 2023	Data gap
•Ensure the identification of keystone and foundation species by 2025	Data gap
•Protect a minimum of 30% of the known distribution of keystone and foundation species by 2028	Data gap
•(objectives for long-term maintenance of biologically mediated processes)	Data gap
•(objectives for maintaining functional diversity of deep-sea ecosystems)	Data gap
•Ensure no further loss of deep-sea biodiversity at ecologically relevant scales by 2030	•••••
• Halt significant adverse impacts on vulnerable, endangered, or critically endangered species or habitats by 2030	••••
• Protect a minimum of 75% of the known hotspots of biodiversity of deep-sea ecosystems by 2023	•
• Protect 100% of the near-natural habitats within current fishing depths by 2023	•
•Ensure at least 15% of all deep-sea benthic habitats and associated ecosystems are protected by 2023	••
•Ensure that the connectivity patterns, maximum larval dispersal distances and average annual movements of deep-sea foundation, keystone, vulnerable, and economically important deep-sea species are revealed by 2030	Data gap
•Ensure that maximum distances between the network units smaller than the 75 th percentile of the median larval dispersal distances and average annual movements of mobile fauna by 2033	0
•(Resilience)	Data gap
•Ensure the identification of areas with least climate hazards and climate-refugia for deep-sea biological diversity and commercially important deep-sea benthic fishes	Data gap
by 2025	cont

Supporting scientific information

- Known essential fish habitats (Santos et al., 2010; Menezes et al., 2012; Melo and Menezes, 2002)
- Known Vulnerable Marine Ecosystems (Morato, Carreiro-Silva, Dominguez-Carrió et al., unpublished data; Beaulieu & Szafranski, 2019)
- Known occurrence records of selected Vulnerable Marine Ecosystems indicator taxa (endemic, extremely long-lived, and reef engineers) (COLETA database; multiple other sources)
- Known shallow (<250m) and deep (>1500m) seamounts (Morato et al., 2008; 2013; Rodrigues et al., unpub. data)
- Known near natural areas in the range of current deep-sea benthic fishing activities (< 1200m) (Morato et al., unpublished data)
- Geomorphic Management Units derived from the best-compiled bathymetry dataset (Gerald Taranto, unpublished data)
- Habitat suitability and abundance models of commercially important deep-sea benthic fish (Parra et al., 2017)
- Habitat suitability models of habitat-forming and vulnerable coldwater corals (Taranto et al., unpublished data)
- Habitat suitability models of endangered or critically endangered deep-water sharks and rays (Das et al., unpublished data)
- Inferred Vulnerable Marine Ecosystems index (Morato et al., 2018)
- Existing area-based management tools (e.g. MPAs)
- Other published sources

tinue

Important Areas approach

Known VMEs

Known Essential Fish Habitats, Near-natural areas, shallow and very deep seamounts

2

2

Compile and collect relevant data

Identify knowledge gaps

Known Essential Fish Habitats, Near-natural areas, shallow and very deep seamounts

Important Areas planning boundaries

Features that based on the best available knowledge are of ecologically or biologically importance. Placement of closures should fully capture these areas

WORKSHOP 1 PICES ANNUAL MEETING 24-25 SEPTEMBER 2022, BUSAN, KOREA IMPROVED DEEP-SEA BIODIVERSITY ASSESSMENTS INFORM SUSTAINABLE MANAGEMENT Telmo Morato: UNIVERSITY OF THE AZORES, PORTUGAL

WORKSHOP 1 PICES ANNUAL MEETING 24-25 SEPTEMBER 2022, BUSAN, KOREA IMPROVED DEEP-SEA BIODIVERSITY ASSESSMENTS INFORM SUSTAINABLE MANAGEMENT Telmo Morato: UNIVERSITY OF THE AZORES, PORTUGAL

Spatial prioritization tool

30%

Plus an

Complement the network with Important Resources necessary to achieve the prioritization targets

24 Scenarios were produced

Fundo Europeu de

WORKSHOP 1 PICES ANNUAL MEETING 24-25 SEPTEMBER 2022, BUSAN, KOREA IMPROVED DEEP-SEA BIODIVERSITY ASSESSMENTS INFORM SUSTAINABLE MANAGEMENT Telmo Morato: UNIVERSITY OF THE A OF THE AZORES, PORTUGAL

30%

scenar

AZORES

Complementing the network with a representativity and connectivity approach

To achieve the prioritization targets (spatial planning closure and feature's representation targets) in the "data-poor abyssal" area and to ensure connectivity across the entire spatial planning area

- Topological cost connectivity framework to define the optimum network of least-cost paths (commonly used by social network's experts to assess the centrality of a given community)
- 2. Network centrality metrics to identify the importance of the different elements in the network
- 3. Simplification of the systematic conservation planning scenarios

DEEP-SEA RESEARCH

Performance assessment of the solutions against the design criteria

1) Viability & Adequacy, 2) Replication, 3) Connectivity, 4) Representativity, 5) Important resources, 6) Important Areas, 7) Resilience to climate change and other stressors

Performance assessment

Protect									
5	Single		E	Bands	5		Multi		
15	30	50	15	30	50	15	30	50	
1	1	1	6	4	5	6	5	4	
101	115	130	25	66	102	71	91	116	
62	105	157	45	85	133	81	150	216	
	0	55	81	131	175	19	60	138	
0	11	21	9	21	50			4	
47	132	188	46	104	211	42	105	185	
7	32	67	4	20	56	1	8	48	

	EDITO		1 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2							1					_
Design criteria	licator S S		Spatial planning area targets	, 15%					30%						
Viability and adequacy	Size of the network (1,000 km ²)		Cost	Are	ea-base	ed	Fishi	ing-bas	sed	Are	ea-base	ed	Fishi	ng-bas	sed
	Proportion of the spatial planning area in the solution		Clumping	Low	Med.	High	Low]	Med. 1	High	Low	Med.	High	Low 1	Med.	High
	Proportion of the spatial planning closure targeted area achieved		Viability and adequacy												
	Compile and Proportion of priority areas in the "data-poor abyssal" area		Size of the network $(x1000 \text{ km}^2)$	51.2	51.1	57.0	49.7	52.3	56.2	57.5	57.6	62.9	57.4	58.2	62.3
	Average size of priority areas		% Spatial planning area	5.4	5.4	6.0	5.3	5.5	6.0	6.1	6.1	6.7	6.1	6.2	6.6
	Proportion of the network that is already protected Proportion of the fishing footprint in the network		% "Data-rich" area	9.3	9.0	10.3	8.8	9.3	10.0	10.7	10.4	11.6	10.7	10.5	11.4
			% "Data-poor abyssal" area	3.5	3.6	3.9	3.5	3.6	3.9	3.8	3.9	4.1	3.7	3.9	4.1
	Proportion of the total fishing effort in the network in Fish		% Spatial closure target achieved	36.2	36.1	40.3	35.1	36.9	39.7	20.3	20.3	22.2	20.3	20.6	22.0
Replication	Number of priority areas Habitats, Near-natural "minir	"minimum set" o set of PUs that	% "Data-rich" spatial target achieved	61.8	59.9	68.5	58.6	61.9	66.8	35.6	34.8	38.7	35.6	35.1	38.1
	Number of priority areas larger than 100km ² hallow and very set of		% "Data-poor abyssal" target achieved	23.1	23.9	25.8	23.1	24.2	25.9	12.5	12.9	13.8	12.4	13.1	13.8
Connectivity	Average distance to closest neighbour (km) earnounts solution	on whilst e	% Priority areas in "data-poor abyssal"	42.2	43.9	42.4	43.5	43.4	43.1	40.8	42.1	41.1	40.6	42.2	41.4
Identify	Maximum distance to closest neighbour (km) Proportion of isolated priority areas (dist. >100km)		Average size of priority areas (km ²)	280	367	750	213	201	677	217	400	983	284	207	889
			% Network already protected	3.0	3.7	3.2	3.4	3.4	3.3	3.4	3.5	3.1	2.7	3.4	3.1
	Proportion of total network area that is isolated	% Fishing footprint in the network	22.5	21.9	24.9	13.4	16.8	19.6	31.3	34.7	35.0	17.5	22.0	26.4	
	Proportion of highly connected priority areas (>10 peighbours < 100 km)	% Fishing effort in the network	27.7	27.2	31.0	20.7	22.2	24.0	41.9	44.6	44.2	25.5	27.9	30.2	
	Proportion of total network area that is highly connected		Replication												
Downsonatativity	Proportion of dorth class in the solution		N priority areas	183	139	76	233	260	83	265	144	64	202	281	70
Representativity	Proportion of depth class in the solution	N priority areas larger than 100km ²	91	78	45	103	67	46	96	87	46	99	82	46	
	Proportion of each seabed class in the solution	Connectivity													
	Number of GMUs that achieved the spatial planning target	Ave distance to closest neighbour (km)	16.8	20.9	33.3	15.3	13.1	29.5	12.8	21.2	38.9	15.8	12.3	34.1	
	Proportion of shallow (U-800m), medium (800-1500m) and deep (>1500m) seamounts in th	Max distance to closest neighbour (km)	152.6	233.1 2	204.1 1	52.6	179.0 2	209.4	156.2	148.1	240.0	152.6 1	181.2 2	240.0	
	continue	% Isolated priority areas (dist. >100km)	2.2	1.4	2.6	2.2	1.2	2.4	1.5	2.1	4.7	2.0	1.1	4.3	
			% Network area that is isolated	0.8	1.0	7.8	0.9	0.9	8.5	0.7	7.4	9.5	0.7	0.5	8.9
H/MRFS	🙆 OKFANOS 🥟 Manges 🔮 atlas		% Highly connected areas*	54.1	48.9	26.3	71.7	84.6	25.3	66.8	56.9	3.1	62.4	86.8	5.7
DEEP-SEA RESEARCH		EANO AZUL	% Network area that is highly connected	65.2	47.3	28.4	70.6	73.6	23.4	68.1	54.3	22.6	70.7	71.3	13.2

WORKSHOP 1 PICES ANNUAL MEETING 24-25 SEPTEMBER 2022, BUSAN, KOREA IMPROVED DEEP-SEA BIODIVERSITY ASSESSMENTS INFORM SUSTAINABLE MANAGEMENT Telmo Morato: UNIVERSITY OF THE AZORES, PORTUGAL

Forecasting ecosystem-level outcomes: The outputs of the SCP approach were transferred into the spatially-oriented ecosystem model (EwE) to forecast the effects of such management measures in the whole ecosystem

AZORES

continue

INFORM SPATIAL PLANNING AND DECISION MAKING

WORKSHOP 1 PICES ANNUAL MEETING 24-25 SEPTEMBER 2022, BUSAN, KOREA

IMPROVED DEEP-SEA BIODIVERSITY ASSESSMENTS INFORM SUSTAINABLE MANAGEMENT Telmo Morato: UNIVERSITY OF THE AZORES, PORTUGAL

Lessons learned

Ocean-basin scale SCP to identify broad areas of conservation interest

Regional SCP help the implementation of area-based management tools at a finer scale

IMPROVED DEEP-SEA BIODIVERSITY ASSESSMENTS INFORM SUSTAINABLE MANAGEMENT Telmo Morato: UNIVERSITY OF THE AZORES, PORTUGAL

OBRIGADO

UNIÃO EUROPEIA

Fundo Europeu d