Using species distribution modeling to predict deep-sea coral and sponge communities, hotspots, diversity and indicators

CN Rooper (DFO) ICES WKPHM MF Sigler (NOAA) P Thompson (DFO) O Gemmell (SFU)

PICES Workshop W1 Sept. 24, 2022

WORKSHOP ON THE USE OF PREDICTIVE HABITAT MODELS IN ICES ADVICE (WKPHM)

VOLUME 3 | ISSUE 67

ICES SCIENTIFIC REPORTS RAPPORTS SCIENTIFIQUES DU CIEM

ICES INTERNATIONAL COUNCIL FOR THE EXPLORATION OF THE SEA COUNSEIL INTERNATIONAL POUR L'EXPLORATION DE LA MER

February 1-5, 2021 ~30 participants

Objectives of the workshop:

Identify the methods for modelling the distribution of VMEs that would be most appropriate for use within ICES advice

Detail 'required' and 'desirable' criteria in data, model techniques, display of results, validation and performance

Develop clear standards for recording the caveats and assumptions inherent in the modelling method

Review and recommend a set of criteria, similar to the existing ICES benchmarking system for regional fish stock assessments, under which new and existing predictive habitat models can be used for ICES scientific advice related to the distribution of VMEs

Model types and usefulness for VME

Model type Data requirements		Assumptions	Treatment of spatial structure in data	Ecological relevance	Type of output	Spatial uncertainty	Transferability	Relative usefulness for VME PHM
Universal kriging (AKA Regression Kriging and Kriging with external drift) (Bivand et al., 2008),	P/A or Continuous dependent variable Independent variables when co-variate trends included Even spatial spread of observations	Spatial autocorrelation Normality (in residuals if co-variste trend model fitted)	Variogram model fitted to represent spatial dependence among (residuals at) points	Variogram depicting spatial relation Response curves for co- variate trend functions	P/A Abundance	Kriging variances / standard errors	Not transferable in space or time	1
Kernel Density Estimation (KDE) (Bivand et al., 2008),	Continuous variable Even spatial spread of observations	Spatial autocorrelation	Weighted density evaluated within defined spatial neighbourhood	Kernal density estimate	Weighted density raster	Not estimated	Not transferable in space or time	2
Generalized linear models and general additive models (GLM/GAM) (McCuilagh and Nelder, 1989, Wood 2006)	P/A or continuous dependent variable Independent variables	Normality in residuals Appropriate link function for data distribution Error independence No overdispersion in abundance data	X and Y and/or their interaction as independent variables	Smooth response curves fitted to data	Probability of P/A Continuous on scale of dependent variable	Standard error	Easy to generalise Good for transfer in time or space	4
Generalized linear mixed models and general additive mixed models (GLMM/GAMM) (Wood 2006, Zuur et al., 2009)	P/A or continuous dependent variable Independent variables	Normality in residuals Appropriate link function for data distribution Error independence No overdispersion in abundance data	X and Y and/or their interaction as independent variables Various ways to include spatial random effects	Smooth response curves fitted to data	Probability of P/A Continuous on scale of dependent variable	Standard error	Easy to generalise Not transferable in time or space	3
	•	•						
Model type	Data requirements	Assumptions	Treatment of spatial structure in data	Ecological relevance	Type of output	Spatial uncertainty	Transferability	Relative usefulness for VME PHM
Boosted regression trees (Elith et al., 2008)	P/A or continuous dependent variable Independent variables	None	X and Y as predictor variables	Response curves produced by model prediction – not always interpretable	Probability of P/A or Factor class Continuous on scale of dependent variable	Bootstrap estimates of prediction variability	Transferability questionable	4
Random forest (Cutier et al., 2007)	P/A, Factor or continuous dependent variable Environmental variables	None	X and Y as predictor variables	Response curves produced by model prediction – not always interpretable	Probability of P/A or Factor class – proportion of trees predicting presence Continuous on scale of dependent variable	Bootstrap estimates of prediction variability Proportion of trees (factor classes) Standard error (continuous variables)	Transferability questionable	4
Maximum entropy (Phillips et al., 2006)	Presence only (possibly with user defined background points) Environmental variables	Equal likelihood of sampling over background (random or constant sampling) Constant detectability	No explicit spatial structure	Representative response curves depending on the complexity allowed in the model responses	Raw output is a relative occurrence rate Logistic, log-log or clog-log output approximates presence probability	Bootstrap estimates of prediction variability	Easy to generalise Good for transfer in time or space	3
Multivariate Mixture Models (e.g. species archetype models, regions of common profiles) (Dunston et al., 2011)	P/A or continuous dependent variable Independent variables Usually a community matrix	Parametric species response to their environment	No explicit spatial structure	Plots to choose the number of species archetypes/RCP Archetype/RCP response to the covariate	Predicted probability of each species archetype or RCP Archetype/RCP membership probabilities	Standard error Confidence intervals	Can be transferable in space and time	3

Model type	Data requirements	Assumptions	Treatment of spatial structure in data	Ecological relevance	Type of output	Spatial uncertainty	Transferability	Relative usefulness for VME PHM
Spatial point process models (for presence only data – specifically) (Bivand et al., 2008),	Presence only Independent variables	Different classes of PPM have different assumptions Points are independent The intensity of points varies spatially with the environment	Yes. The object of primary interest in a PPM is the spatial location of the presence points	Influence, leverage and partial residual plots	Intensity of observations Raw output is a relative occurrence rate Logistic, log-log or clog-log ouput approximates presence probability	Depends on software and class of PPM model used	Can be transferable in space and time	3
Joint Species Distribution Models (Ovaskainen et al., 2017)	P/A or continuous dependent variable Usually community matrix Independent variables Can include species traits and phylogenetic data Spatial-temporal data can be included	Parametric species response to their environment	Yes. Spatially structured random effect which can capture species associations irrespective of independent data	Variance partitioning plot Smooth response to covariates Species traits environmental responses Species residual associations	Probability of P/A Species richness Community- weighted mean traits Regions of common profile	Standard error, credible intervals	Transferable in space or time, but not if using random spatial effects	3

Annex 2: Required and Desired Criteria

Table A.2.1. Summary of required and desired criteria for use in evaluating PHM for use in ICES advice. This table summarizes the criteria developed in the individual report sections and should be applied to new PHM. Existing PHM should also be reviewed for appropriate use in the context of these criteria.

	•			UNAC	CEPTABL	E			REQUIR	ED		DESIRED										
			Sampli scribed	ng design fo L	or data colle	ction not de	 All the a a clear d 	vailable data lescription of	that meet QC sampling des	standards are used, v ign(s) and data collect	vith Data are ion. the same ardized in cessing. provided	sampled via systematic su of or biological and environ methods are used for sam A clear description of a rol	ampling desig nmental data ple collection bust sampling	m (which are and stand- and pro- g design is			_					
			De me cor																			
Δ	filen	1	tio			Data have	UNACC no quality co	EPTABLE introl and/or	associated	Quality control of d	REQUIRE Ita undertaken,	D based on metadata of	Data are sa	DI ampled via system	ESIRED matic samp	ling design (same for						
.VO (TVC	Data q	1	No		uality	metadata.				quality assured (QA and methodology.	databases or re	ported survey design	biological a ods are use pling design	and environment ed for sampling. n is provided.	tal data) an Clear descr	d standardized meth- iption of robust sam-						
OLOGIC					Cata qu	So																
L (BI(Pre	VIA		m			Control on 4	UNACCEPTAB	LE	F	REQUIRE	D	estine	DES	IRED					
PENDEN	ats, das- ions	1	ser Ca da	ITAL) D/	tholoe	La wi th	AND TEM	LSCALES	location of	temporal extents, res the study used are no	ral extents, resolutions and dy used are not justified. The spatial and temporal extents, resolutions and locati of the study are justified as evidenced from peer-review studies, data availability and/or quality-controlled data- bases.			/iewed ata-	tion of the VME indicator taxa current and historical distribut	L extent, resolution and distribu- ea are known and used, including sution of the VME/indicator.						
DE	Cave: bias an sumpt	velune		ONMEN	/ariable (de Pri foi fro	SPATIAL	PORA	Model inclu where natu changed th	ides outdated data fro ral or anthropogenic i e response – predictor	a from locations Model includes data that is relevant to current conditi mic influences have (including anthropogenic influences). lictor dynamics.			itions	Model is updated regularly wi	th new data.						
	ĥ	1	Re	VIRG .		tic				UNACCEPTAB	PTABLE REQUIRED				DES	IRED						
	Тахопо	1	Tas lar	JENT (EN)	ocessing	Sp ins m Na ag		Objective	No objec	tives stated.	Model objective (to explain, predic is stated.			predict or pro	oject) Model objective (to explain, predict or project) is stated and hypotheses for model linkages are clearly stated.							
				DEPENI	Data pr	an De																
				Ĩ.		mo	50	pot	1		ι	INACCEPTABLE			REC	UIRED	DE	SIRED				
					earity	Co sir	odellin	ling meth		ents	No inform: vided on m	No information or explanation pro- vided on model terms. Were evalu		Method of extracting relevant method-specific term estimates or coefficients and how they were evaluated is reported.		Same as required crite	ria					
					Collin	Co ac	ž	Model	4	/coeffici	Model com sidered or j	plexity has not been justified.	i con- M u t	Model comple using justified thumb.	exity has d method	been decided/optimised s or agreed rules of	Model complexity has comparison of multiple tion.	been optimis e models and	ed through cross-valida-			
								_ 9	ŀ	odel terms	Model out ated, or mo ered plausi	outs have not been e odel output is not co ble.	evalu- M nsid- u d t	Model output understandin or habitat req tribution.	ts have b ig of the r quiremen	een evaluated and match response taxon's ecology ts and the expected dis-	 Model outputs have be pared with independent erences. 	en evaluated nt data or est	l and com- ablished ref-			
								Model	ř.	Ň	The relativ variables h	e contribution of pre as not been consider	edictor \ red. r	Variable impo mined is repo	ortance a orted.	nd how it was deter-	Same as required crite	ria				
									-	lodel fit	Goodness-	odness-of-fit not considered. Goodness o ate residual plications t		odness-of-fit not considered. Goodness of ate residuals plications to		oodness-of-fit not considered. Goodness of ate residuals plications to		Goodness of fit statistics, and where appropri- ate residuals, have been checked and their im- plications to model interpretation are reported.		Goodness of fit statistics and residuals, ha been checked and their implications to m terpretation are reported. Data and project provided.		als, have to model in- trive are
										Σ	Model per	formance is not repo	rted. M	Multiple mea ported.	sures of i	model performance re-	Same as required crite	ria	0			

	Model type	Data requirements	Assumptions	Treatment of spatial structure in data	Ecological relevance	Type of output	Spatial uncertai	Transferabili nty	ty Relative usefulness for VME PHM				
	Universal kriging (AKA Regression Kriging and	P/A or Continuous dependent variable	Spatial autocorrelation	Variogram model fitted to represent	Variogram depicting	P/A Abundance	Kriging variance	Not s/ transferable i	n				
	Kriging with external drift) (Bivand et al., 2008),	Independent variables when co-variate trends included Even spatial spread of observations	Normality (in residual: if co-variate trend model fitted)	Model type	Data requirements	s Assumption	ĸ	Treatment of spatial structure in data	Ecological relevance	Type of o	utput :	Spatial uncertainty	Transfer
	Kernel Density Estimation (KDE) (Bivand et al., 2008), Generalized linear	Continuous variable Even spatial spread of observations P/A or continuous	Spatial autocorrelation Normality in residuals	Boosted regression trees (Elith et al., 2008)	P/A or continuous dependent variable Independent variat	None. B		X and Y as predictor variables	Response curves produced by model prediction – not always	Probabilit or Factor (Continuou scale of de variable	y of P/A class us on ependent	Bootstrap estimates of prediction variability	Transfer question
	models and general additive models (GLM/GAM) (McCullagh and Nelder, 1989, Wood 2006)	dependent variable Independent variables	Appropriate link function for data distribution Error independence No overdispersion in abundance data	Random forest (Cutier et al., 2007)	P/A, Factor or continuous depend variable Environmental vari	None lent ables		X and Y as predictor variables	interpretable Response curves produced by model prediction – not always	Probability or Factor proportion predicting Continuou scale of de	y of P/A class — n of trees presence us on ependent	Bootstrap estimates of prediction variability Proportion of trees (factor	Transfer questior
	Generalized linear mixed models and	P/A or continuous dependent variable	Normality in residuals Appropriate link			•			Interpretable	variable		classes) Standard erro (continuous variables)	r
Responses to abiotic conditions A7-10 Cheavation francition regimmer scarce, redimmer scarce, redimmer scarce, redimmer scarce,						Equal likelih sampling ov background or constant s Constant de	ood of er (random sampline) stectabi	No explicit spatial structure	Representative response curves depending on	Raw outpur relative of rate	ut is a courrence	Bootstrap estimates of prediction variability	Easy to generali Good fo
Species Fundamental Independent								Model type I	Data requirements	Assu	umptions	Treati spatia data	ment of al structure
niche A2 data	Ass L L L	11 odel Pre	A12 dictions	Interpretation and inference		Parametric: response to environmen	species their it	Spatial point process models (for presence only data - specifically) (Bivand <i>et al.</i> , 2008),	Presence only Independent variabl	Diffe PPM Poin inde The varie the (erent classes / have differe imptions its are spendent intensity of p es spatially w environment	of Yes. T nt prima a PPN locati prese oints ith	The object o any interest i It is the spat on of the noe points
Realized distribution of species	4, 5, 6, 7, 8, 10, 11, 12,	over-relations are investmentative of the so Data are representative of the so Data units meaning/ally represent independent data captare the ly Predictor variables are indepent independent data ere accurate Spatial and temporal scale of th Data meet the accumptions of th Model predictions are hypothec	tady-entent nt species distribution wy factor structuring species of tent and uncorrelated representations of true values e data are appropriate for the termodel 66	listribution goals of the study			-	Joint Species Distribution Models (Ovaskainen et al., 2017)	P/A or continuous dependent variable Usually community matrix	Para resp envi	ametric specie conse to their ironment	es Yes. S struct effect captu associ	patially ured rando which can re species iations
Conceptual illustration of how the assumption tributions, the independent and dependent d the logical flow between these different comp associated with the arrows provides example assumption number listed in the Assumptions	ns provided in T lata, the model, ponents with in es of why the a s list.	able 2.2.1 relate to the predictions, and dications of where easies sumptions may not	ne ecological proces interpretation and i ch of the assumption be met. The red to	inference. The an ons is relevant. The ext indicates the	Figure 2.2.1: ne species dis- rows illustrate the smaller text corresponding				ndependent variabli Can include species t and phylogenetic dai spatial-temporal dat can be included	les traits Ita ta		intep	ective of endent dat

Annex 3: Data Reporting Template

A. Study resolution

- A.1. Location of the study area (or management region)
 - a. Spatial extent of the modelled area
 - b. Spatial resolution of the model and independent variables
 - c. Spatial precision (of observations and independent variables)
 - d. Depth resolution/range/extent (of the observations and independent variables)
- A.2. Temporal extent of the data
 - Dates of data extent
 - b. Precision of date/time
 - c. Data/time resolution
 - d. Impacts over time to consider in the data set (e.g. historical fishing effort)

B. Dependent data

- B.1. Data type (presence, absence, abundance)
- B.2. Data source (e.g. type of survey(s) combined)
- B.3. Measure of sampling effort (if known)
- B.4. Catchability or detectability (known or assumed)
- B.5. Taxonomic level
- B.6. Functional attributes (its ecology)
- B.7. Taxonomic confidence of species/assemblages
- B.8. Rationale for taxonomic/assemblage level modelled
- B.9. Source of absence data
- B.10. Other potential errors or biases in the data
- B.11. Data filtering steps
- B.12. Taxonomic aggregation steps
- B.13. Method for combining dependent data sources (if done outside the modelling)

C. Independent data

- C.1. Independent data (environmental variables used)
- C.2. Independent data source (source of raw or derived data)

- C.3. Native spatial and temporal resolution of the independent data
- C.4. Data processing and scaling (method for downscaling or aggregation)
 - a. Goodness of fit for downscaled aggregated data
 - b. Measurement errors and bias
- C.5. Derivation methods and calculations for derived variables
- C.6. Rationale for inclusion of independent variables clearly stated and ecologically relevant

D. Modelling approach

- D.1. Model steps are clearly described with enough detail to be independently reproduced
 - a. Code for model provided
 - b. Packages used are referenced
 - c. Data is made available as supplementary material
- D.2. Biases (spatial, temporal and other) acknowledged and described
- D.3. Methods and approaches to collinearity in independent variables are given
 - a. Collinearity in independent variables tested
 - b. Criteria for variable/dimension reduction provided
- D.4. Choice of modelling method is explained and justified
 - a. Modelling assumptions are clearly stated
 - b. Potential violations of model assumptions are explored
- D.5. Model application is clearly detailed
 - a. Model settings are comprehensively reported
 - b. Model complexity is assessed
- D.6. Model response curves are generated (where appropriate) and compared to expectations
 - Modelling method-specific term estimates or coefficients are reported (where relevant)
 - b. Independent variable importance is reported

E. Model uncertainty

- E.1. Model specific goodness of fit statistics have been checked and reported a. Multiple measures of goodness of fit have been examined
- E.2. Spatial autocorrelation in the residuals has been assessed and reported
- E.3. Residuals have been tested against assumed distribution (where appropriate)

F. Model validation

- F.1. Training and testing data splitting method clearly described
 - a. Potential spatial biases were accounted for in splitting the data
 - b. A standard method used for cross-validation
- F.2. Truly independent data used for model validation if available

G. Model outputs

- G.1. Maps of model predictions, model residuals and prediction error have been produced
- G.2. Areas of model extrapolation are clearly defined
- G.3. The prediction unit is clearly defined (and explained if necessary)
- G.4. Thresholding methods (for dichotomising probability into presence or absence) are clearly described and appropriate
 - a. The sensitivity of model outcomes to threshold value chosen has been er over

Example template and code

WKPHM Advice Template

WKPHM

May 12, 2021

VME Taxonomic Group(s) modelled: The Order*Antipatharia* (Black Corals) including its Families (Table 1)

Regional Extent: North Atlantic Ocean (ICES management subareas 6, 7, 8, 9, 10, 12)

Summary

The objective of this piece of code was to develop a relatively simple model for a species of coral that could be used to demonstrate the pieces of the proposed ICES PHM advice template. The species chosen was *Antipatharia*. It was chosen simply because it had a fairly large number of observations in the ICES VME database (n = 421). This is not meant to be a realistic model of the distribution of *Antipatharia*, but is instead used here to generate the components of an PHM (data, model, residuals) that can be used to evaluate its predictions and utility. The modelling method used was a general linear model with a binomial distribution. Maps of model predictions are provided in Figure 11. Maps of residuals in Figure 9. Maps of prediction error in Figure 12. The model predicted that the highest probability of presence for *Antipatharia* was in a band from 50-60 degrees North latitude and along areas of moderate slope.

A. Study resolution

A.1. Location of the study area (or management region)

This modelling was carried out for the North Atlantic Ocean.

a. Spatial extent of the modelled area

The specific management regions considered for this modelling exercise were ICES subareas 6, 7, 8, 9, 10, and 12 and comprised the spatial extent of the model (Figure 1).

b. Spatial resolution of the model and independent variables

The spatial resolution of the model and independent variables were 30 arc-second grid (~ 1 km²).

https://github.com/ices-eg/WKPHM

Recommendations

- Transparency in data and methods
- Clearly state the objective of the PHM
- Include all available data that meets criteria and standards
- Collect independent data to validate model predictions
- Include existing and new models in developing ICES management advice
- Facilitate communication between science and management
- Develop a systematic approach to PHM in ICES

What to model (x & y variables)?

- Single taxa
- Multi-taxa
- Density hotspots
- Indicators
- Diversity
- Feasible mechanism
- Model reduction
- Often forced to use proxies for important variables

Presence/absence lways better than presence only

Region	Transects with rocky habitat	Transects with coral
Gulf of Alaska	35%	30%
Aleutian Islands	63%	60%
Bowers Bank	42%	47%
Eastern Bering Sea	19%	13%

How to model (method)?

- Determined somewhat by data availability
- Maximum Entropy v. Statistical v. Machine Learning

Problems with spatial patterns in the data

Accounting for unknown variables using spatial random fields (sdmTMB) – Pacific Halibut

Modeled group	R ² (no spatial term)	R ² (w/ spatial term)			
Large halibut	0.07	0.53			
Small halibut	0.13	0.33			

Thompson et al. in review

Model Fits to Independent Data

1.00 Training data Groundtruth data Test data 0.90 0.80 0.70 0.60 **O**.50 0.40 0.30 0.20 0.10 0.00 Eastern Bering Sea Aleutian Islands Gulf of Alaska

Abundance models (AI only)

Таха	R ²	<i>p-</i> value		
Sponge	0.057	0.001		
Coral	0.172	< 0.001		
Stylasteridae	0.003	0.483		

Presence/Absence models

Topics for discussion/lessons learned?

• The data is the only thing that matters

Model predictions generally robust to method

• Validation is key to transmitting to management

Conclusions/Suggestions

- Most seamounts in the N Pacific have not been systematically surveyed
 - Mostly presence data from bycatch or targeted visual surveys
 - Shelf and slope relationships may not be applicable
- Both presence and absence data are needed from well designed surveys
- Substrate or proxies are the most important variables to know for coral and sponge SDM
- There are well thought out and reproducible guidelines for building SDM from the literature (beyond this ICES report)