Climate Cycles and Population Dynamics of North Sea Herring

Joachim P. Gröger¹, Gordon H. Kruse², and Norbert Rohlf¹

Institute of Sea Fisheries, Federal Research Institute for Rural Areas, Forestry and Fisheries,

Hamburg, Germany

²University of Alaska Fairbanks
School of Fisheries and Ocean Sciences, Juneau Center
Juneau, Alaska, USA

Slave to the rhythm: how large-scale climate cycles trigger herring (Clupea harengus) regeneration in the North Sea

Joachim P. Gröger, Gordon H. Kruse, and Norbert Rohlf

Gröger, J. P., Kruse, G. H., and Rohlf, N. 2010. Slave to the rhythm: how large-scale climate cycles trigger herring (*Clupea harengus*) regeneration in the North Sea. – ICES Journal of Marine Science, 67: 454–465.

Understanding the causes of variability in the recruitment of marine fish stocks has been the "holy grail" of fisheries scientists for more than 100 years. Currently, debate is ongoing about the functionality and performance of traditional stock—recruitment functions used during stock assessments. Additionally, the European Commission requires European fishery scientists to apply the ecosystem approach to fisheries in part by integrating environmental knowledge into stock assessments and forecasts. Motivated to understand better the recent years of reproductive failures of commercially valuable North Sea herring, we studied large-scale climate changes in the North Atlantic Ocean and their potential effects on stock regeneration. Applying traffic light plots and time-series (TS) analyses, it was possible not only to explain the most recent reproductive failures, but also to reconstruct the full TS of recruitment from climate cycles, indexed by the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. A prognostic model was developed to provide predictions of herring stock changes several years in advance, allowing recruitment forecasts to be incorporated easily into risk assessments and management strategy evaluations, to promote a sustainable herring fishery in the North Sea. Insights gained from the analysis permit reinterpretation of the sharp decline in the North Sea herring stocks in the 1970s.

Keywords: AMO, Atlantic herring, climate cycles, cross-correlations, NAO, North Sea, recruitment, time-series analysis.

Received 4 September 2008; accepted 16 October 2009; advance access publication 29 November 2009.

J. P. Gröger and N. Rohlf: Institute of Sea Fisheries, Federal Research Institute for Rural Areas, Forestry and Fisheries, D-22767 Hamburg, Germany. G. H. Kruse: School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 17101 Point Lena Loop Road, Juneau, AK 99801, USA. Correspondence to J. P. Gröger: tel: +49 40 38905 266; fax: +49 40 38905 263; e-mail: joachim.groeger@t-online.de.

Glwulexwlrq#ri#Dwodgwlf#Khuulej

Qruwk#Vhd

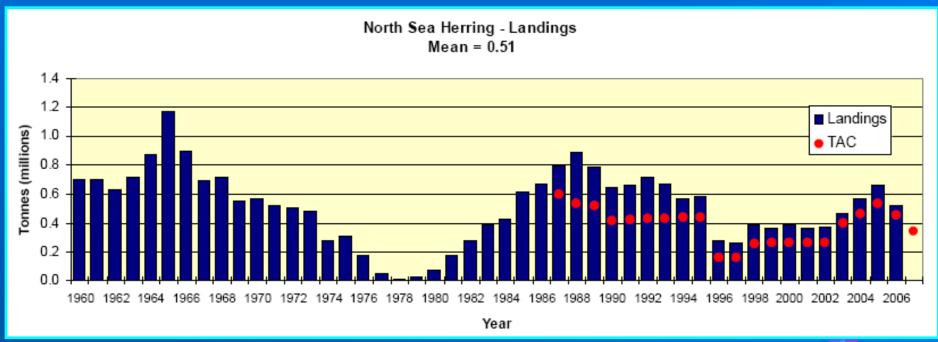
- - •:83/333#np⁵
 - < 93 #[#8;3 #np</pre>
 - Ghswk=
 - < 8 #p#Dyh1,</p>
 - •:33 #p##Pd{,
 - Whps=#9 04:#F
 - Vdobjw = #6 7 06 8

Fischbrötchen

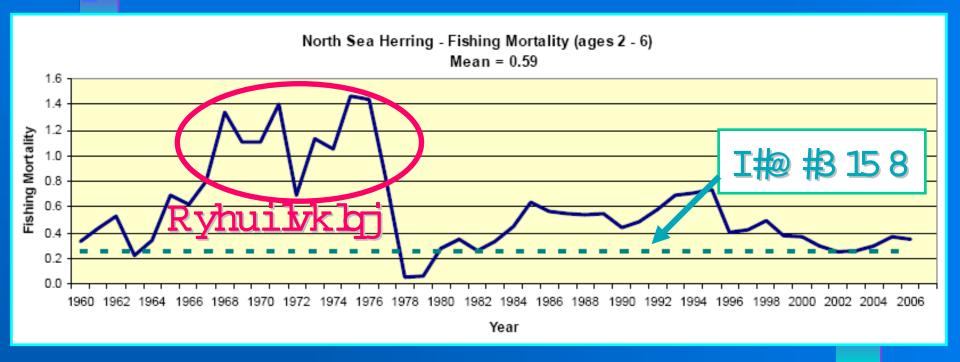
Bückling

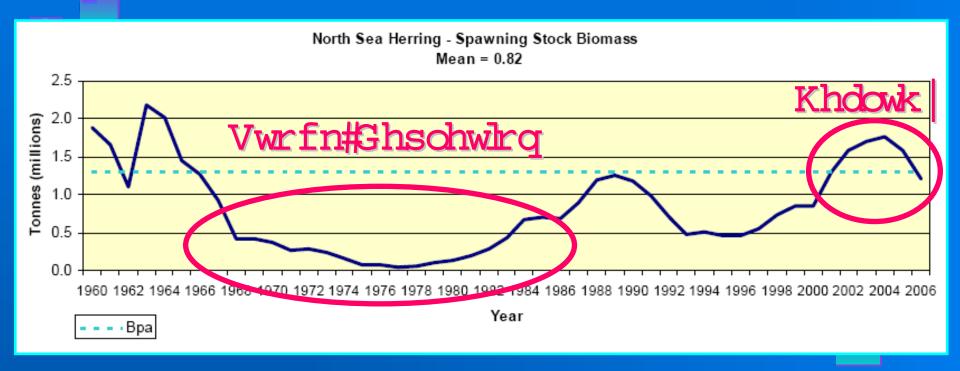
Red Herring Salad

Matjes herring

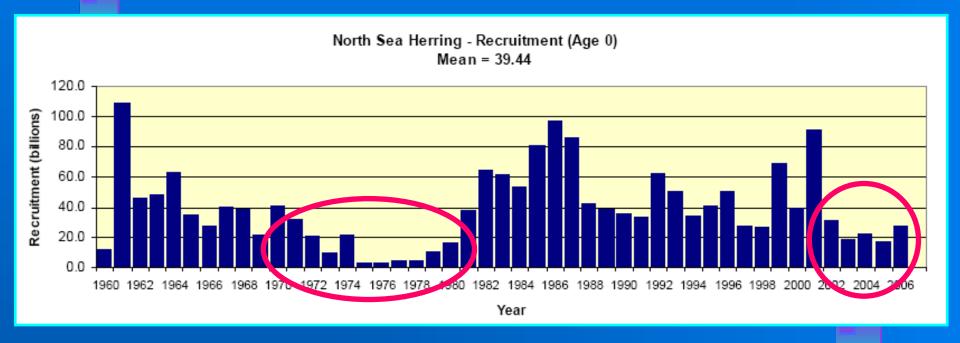

Rollmops

Brathering


Odggbjv#Vbfh#4<93


Phodytodog bjvttitl 184 tpbolrqtwrqqhv

Ilwkbj#Pruwbbw #Vbffh#4<93


- Ilvkbj#pruwdolw|#jhqhudco|#h{fhhgv#uhfrpphqghg#udwh#3158,
- khdy #ryhuilvkbj #b#4 < 93 v@4 < : 3 v</p>

Dwodgwif #Khuubj #Foxshd#kduhgjxv,

- Vsdzqbj#vwrfn#elrpdvv#riwhq#ehorz#
 wkh#suhfdxwlrqdu | #elrpdvv#Esd,
- Orwh#khdowk | #vwrfn#b#5333v

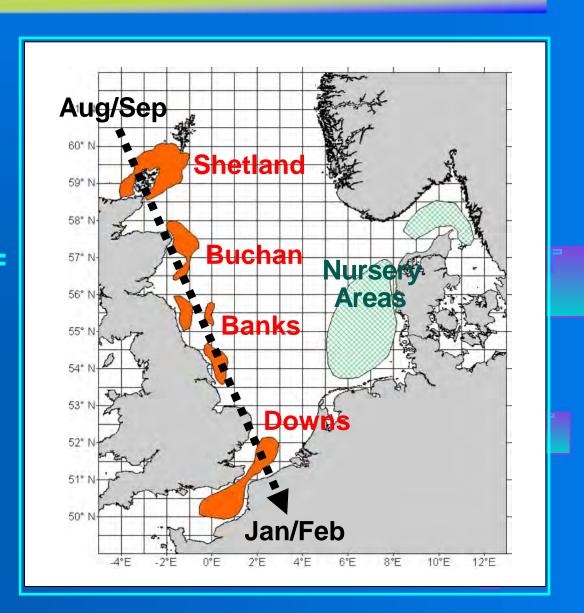
Dwodgwlf #Khuubj ##oxsho#kduhgjxv,

- Qrwh#f folfdo#uhfuxlwphqw#sdwwhuq
- srru#uhfuxlphqw#bq#kh#4 < : 3 v#bqg# uhfhqw#|hduv

Rembfwlyhv=

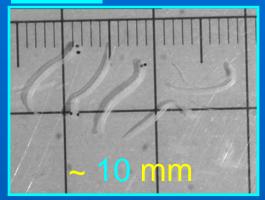
- Hvwpdwh#h{whqw#wr#zkIfk#Qruwk# Vhd#khuubj#uhfuxlwphqw#fdq# eh#uhfrqvwuxfwhg#iurp# folpdwh#bgIfhv
- Frqwulexwh#wr#dq#rqjrbj#
 ghedwh#rq#wkh#ixqfwlrqdolw|#ri#
 vwrfnOuhfuxlw#ixqfwlrqv

Khuubp #gowd

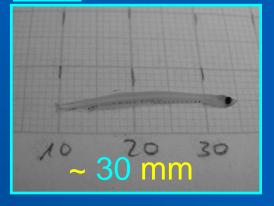

- Pxowlsolfdwlyh#bduydo#bexggdgfh#lggh{#
- PODL Ù bgh{#ri#bexqgdqfh#ri#vpdoo# +2 43 #pp #bduydh#diwhu#vsdzqbj#iurp# pxowlsoh#vxuyh|v
- Phwkrw#tvddfv0Nbg#togh{#PIN, Û bgh{#ri#
 odwh0vwdjh#£63 #pp,#bduydh#diwhu#
 ryhuz bwhubj
- Uhfuxw#IJ, Ù dexggdqfh#dw#djh#4
- Vsdzabj#Wwrfn#Elrpdvv#WVE, Û elrpdvv# ri#pdwxuh#ilvk#iurp#wwrfn#dvvhvvphqw

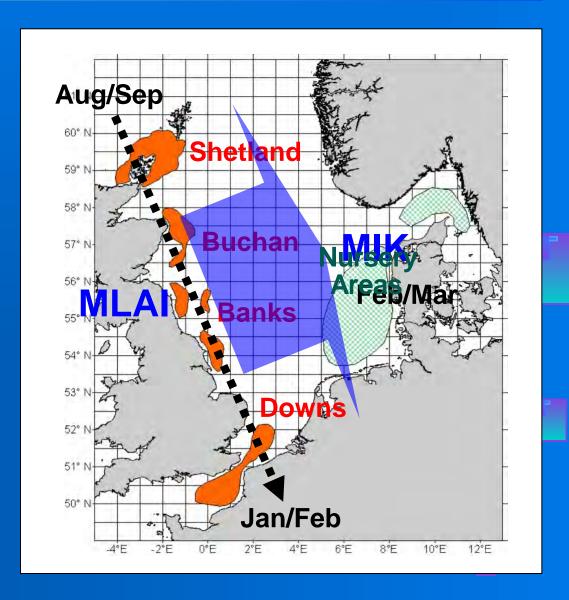
Qruwk#Vhd#Wwrfn#Vsdzqbj#Vwhv

Dxwxpq#
Vsdzqljj#
Khuuljj

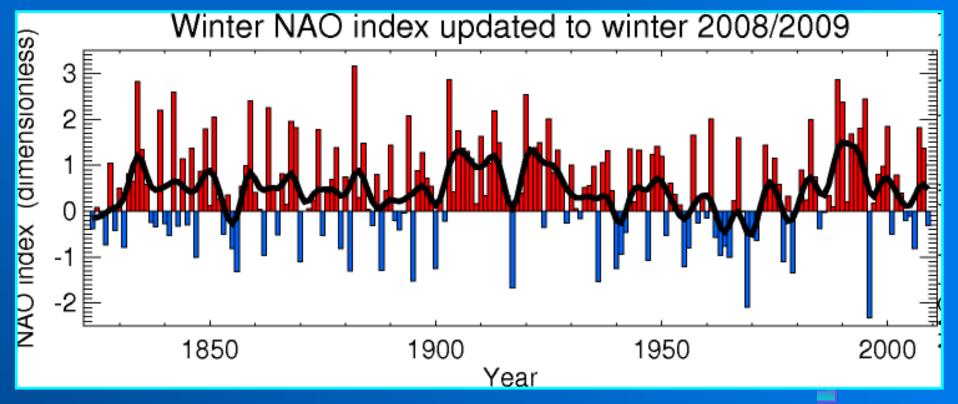

Irxu#Vwrfnv=

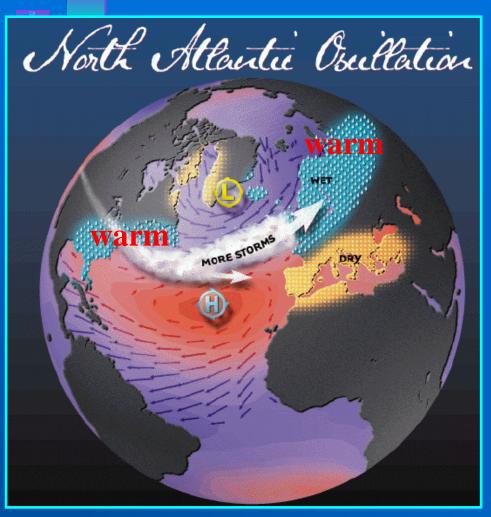
- Vkhwodgg
- Exfkdq
- Edqnv
- Grzqv




Vwrfn#Vsdzqbj#Vwhv#) #Gdwhv

MLAI


MIK

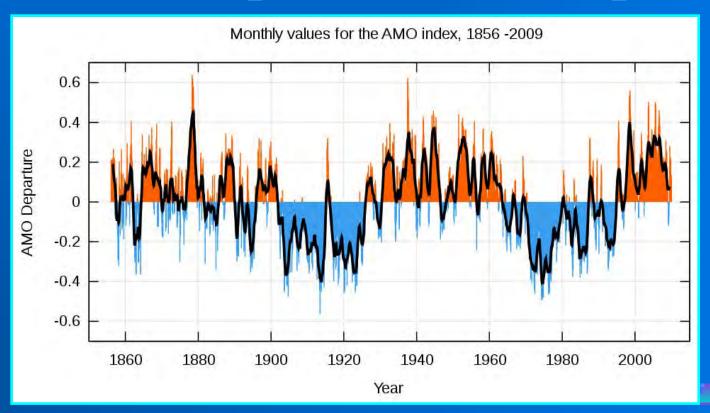


Folodwh#log lfhv

- Qruwk#Dwodqwlf#Rvfbodwlrq#QDR, U bgh{#
- ri#vhd@hyho#suhvvxuh#gliihuhqfh# ehwzhhq#fhodqglf#Orz#dqg#D}ruhv#Kljk

QDR#SrvWyh#Zdup#Skdvh

- Vwurqjhu#kdq#xvxdo# vxewursIfdo#kljk#dqg#d# ghhshu#kdq#qrupdo# Ifhodqglf#brz
- Pruh#dg#wurqjhu# zbwhu#wrupv#furvvbj# wkh#Dwodqwlf#Rfhdq#rq#d# pruh#druwkhuo|#wudfn1#
- Wklv#uhvxowv#bq#zdup# dqg#zhw#zbwhuv#bq# Hxursh


QDR#Qhjdwlyh#Frro#Skdvh

- zhdn#vxewursfdo#kljk# dqg#zhdn#ffhodqgff#brz#
- uhgxfhg#suhvvxuh#
 judghqw#uhvxow#bq#
 ihzhu#bqg#zhdnhu#
 zbwhu#vwrupv#furvvbj#
 rq#bpruh#zhvwhdvw#
 sdwkzd|1#
- prlw#dlu#iorzv#bwr# wkh#P hglwhuudqhdq/# ohdybj #frog#dlu#bq# qruwkhuq#Hxursh#

Folodwh#IggIfhv

- Dwodgwlf#Pxowlghfdgdo#Rvfbodwlrg#DPR
- D bgh{#ri#brqj@hup#vhd#vxuidfh#
 whpshudwxuh#b#wkh#Qruwk#Dwodqwlf

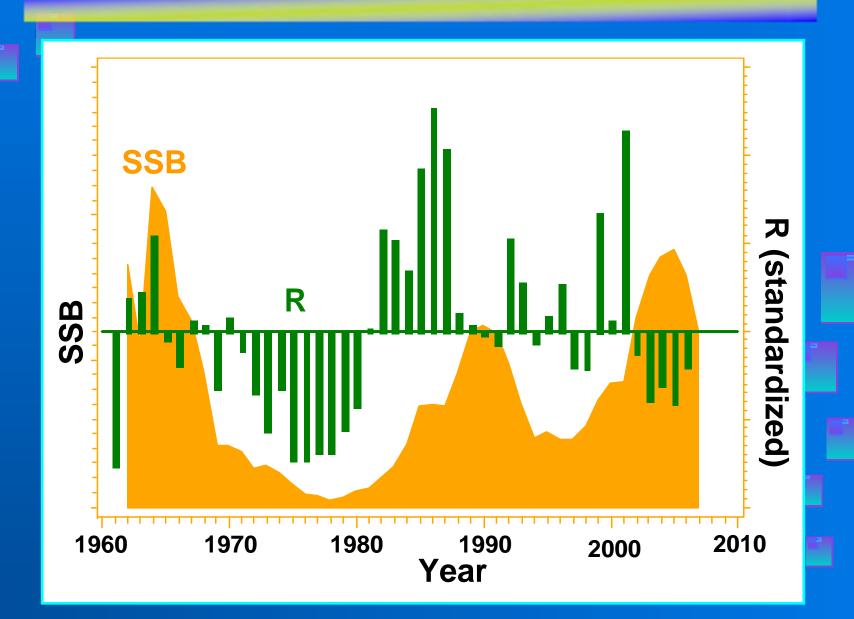
VwrfnWhfuxldDqdo vhv

Ilwhg#kuhh#frqyhqwlrqdofprghov=

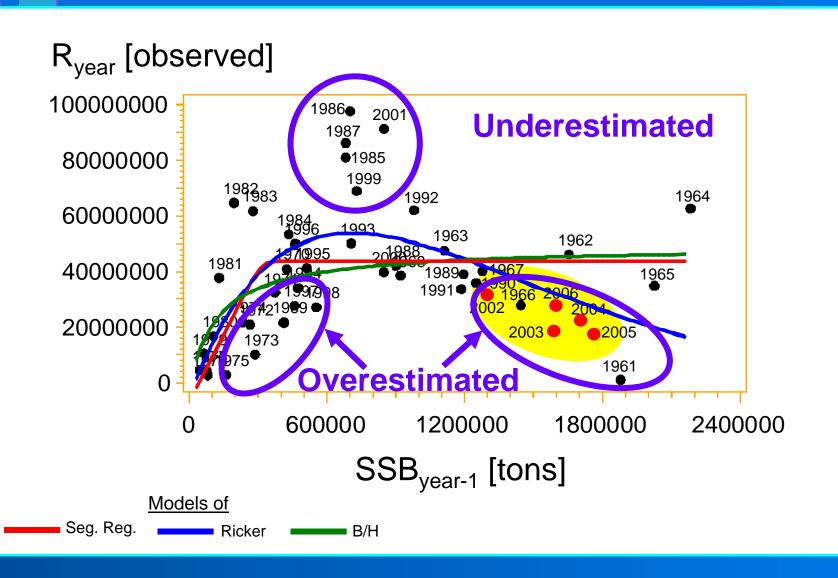
- Ulfnhu
- EhyhuwrqKrow
- Vhjphqwhg#uhjuhvvlrq
- Ilwhg#h{whqghg#Ulfnhu#prgho=

$$\ln\left(\frac{R_t}{SSB_{t-1}}\right) = \ln(b_1) + b_2 SSB_{t-1} + b_3 \text{ winter AMO}_{t-\text{lag}1} + b_4 \text{ winter NAO}_{t-\text{lag}2},$$

Wiph#Vhuhv#Dado vhv


- FurvvŒruuhcdwlrg#bgdo vlv Ù
- fruuhodwlrqv#dprqj#15#wlph#vhulhv#wr#
 h{dplqh#srwhqwbb#ghod|hg#hiihfwv
- Vshfwudo#bqdo vlv Ü dqdo vlv#ri#[folf]w #
 ri#uhfuxlwphqw#bqg#h{whuqdo#idfwruv#wr#
 orrn#iru#fruuhvsrqgbj#wudmhfwruhv
- dxwruhjuhvvlyh#bwhjudwhg#prybj#
 dyhudjh#DUIPD #prgho Ù lqfoxghv#
 idfwruv#bqg#sdwhuqv#bhqwli.hg#bwr#b#
 uhfuxlwphqw#iruhfdvwbj #prgho

8 #Vwhsv#wr#P rgho#Ighqwli.lfdwlrq

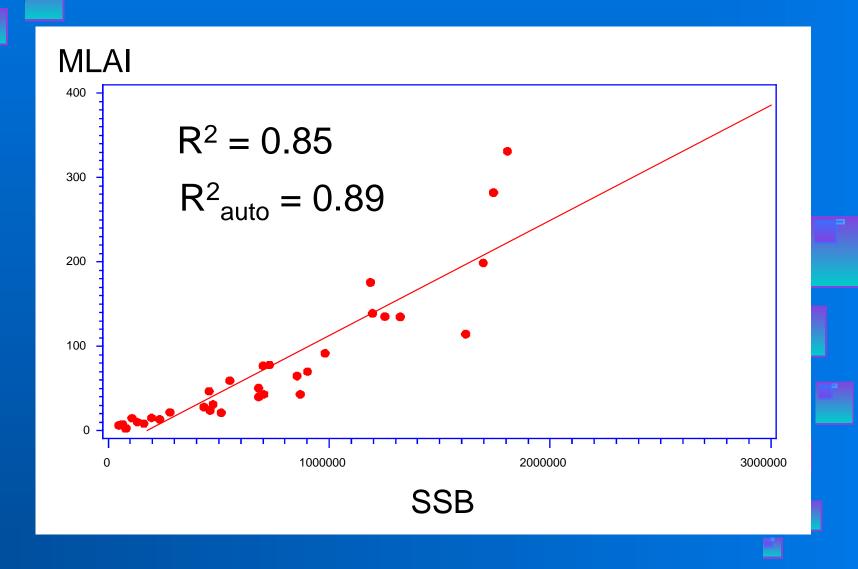

- 4 10 wde bl}h#dqg#suh0zklwhq#wkh# wlph#vhulhv
- 5 1Surfhvv#ghqwlilfdwlrq#

 #dxvdwlyh#idfwruv/#wph#bdjv,
- 6 1Hvwpdwlrq#ri#prgho# sdudphwhuv
- 71Gbjqrvwffv
- 8 1 Iruhfdvwbj

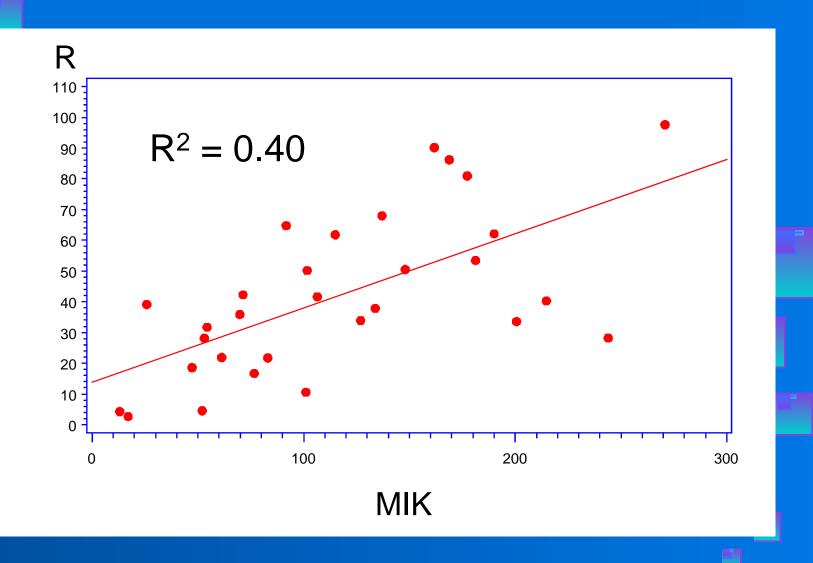
Wuhqqv#bf#VE#) #U

Vwrfn@uhfuxlwphqw#uhodwlrqvklsv

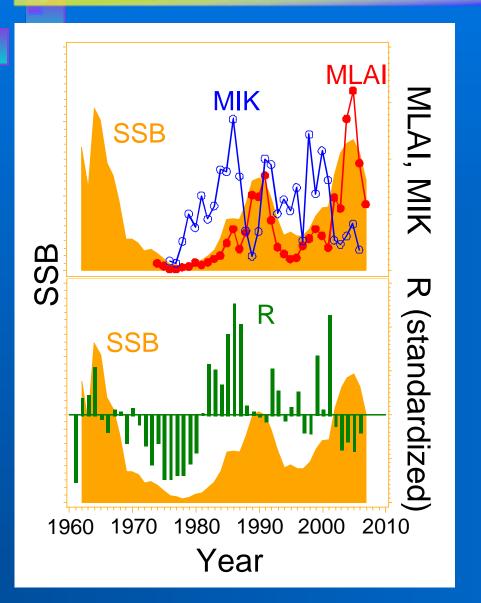
Vwrfn@uhfuxlwphqw#uhodwlrqvklsv


Table 1. Parameter estimates and quality-of-fit information from fits of stock-recruitment models.

	Model parameters		Model diagnostics	
Model	b ₁	b ₂	rperformance	AICC
Segmented regression	130.7	356 091	0.49	33.9384
Ricker	167.4	1.154E – 6	0.51	33.9069
Beverton and Holt	0.002 85	54 137 400	0.47	33.9607

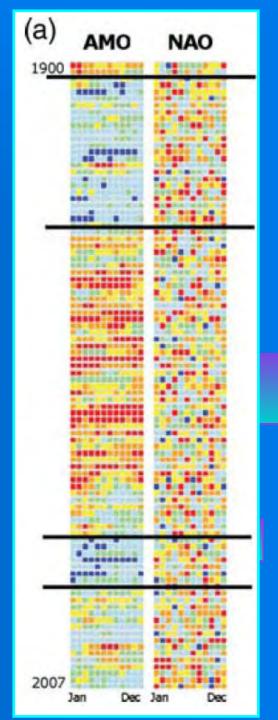

All three models and the single parameters associated with them were asymptotically significant at a 5% level.

- doo#prghov#duh#Vljqlifdqw#s? 3 13 8 #
- Hdfk#h{scdby#55059(#ri#ydubebbw


PODI###VE#mgh{

PIN# #Uhfuxlwphqw#Iggh{

Wuhqqv#b#Iqqlfhv

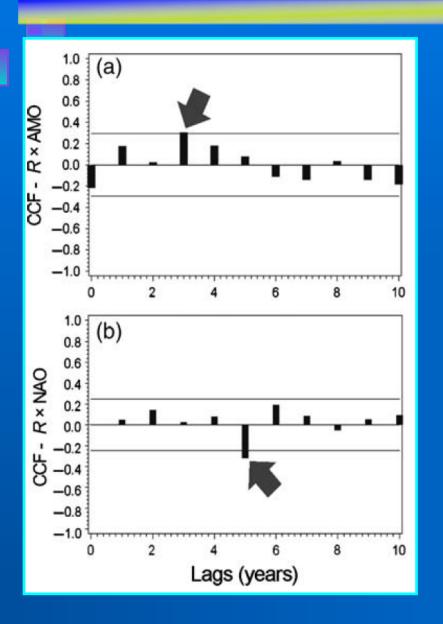


Traffic Light Plot (quintiles)

Year	R	MIK	MLAI	SSB
1976	20	20	20	20
1977	20	20	20	20
1978	20	20	20	20
1979	20	40	20	20
1980	20	40	20	20
1981	40	60	20	20
1982	80	40	20	20
1983	80	60	40	20
1984	80	80	40	40
1985	100	80	40	60
1986	100	100	60	60
1987	100	80	40	60
1988	60	40	60	60
1989	60	20	80	80
1990	40	40	80	80
1991	40	100	100	80
1992	80	100	60	80
1993	60	40	40	60
1994	40	60	40	40
1995	60	60	20	40
1996	60	80	40	40
1997	40	20	40	40
1998	40	100	40	40
1999	100	60	60	60
2000	60	100	40	60
2001	100	80	40	60
2002	40	20	80	100
2003	20	20	80	100
2004	20	20	100	100
2005	20	40	100	100
2006	40	20	100	100

Wuhqqv#bp#DPR#) #QDR

- Orupdol\hg#iru#hdfk#prqwk#
 ryhu#43:#|hduv=
 - DPR#bglfdwhv#wzr#frrobj# shulrgv=#4 < 36 04 < 58 #) # 4 < 98 04 < : <
 - QDR #ydoxhv#duh#pruh# hyhqo | #glwulexwhg#


Wuhggv#bp#DPR#) #QDR

<u>Qrupdol}hg#iru#hdfk#|hdu#dfurvv#prqwkv=</u>

• Iq#bdvw#4; 04<#|hduv/#QDR#Iv#brzhu#b#</p>
Dxj@ry#bqg#kljkhu#b#Ghf@he#

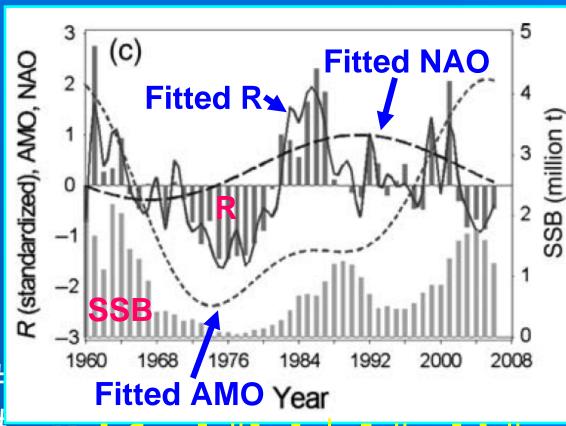
FFIv#Ehwzhhq#U#dqg#DPR#ru#QDR

Diwhu#suh@kWhqhg#
vwdwlrqdu |#wph#
vhulhv=

 $CCF = Corr(R_t, NAO_{t-1})$

 $CCF = Corr(R_t, AMO_{t-1})$

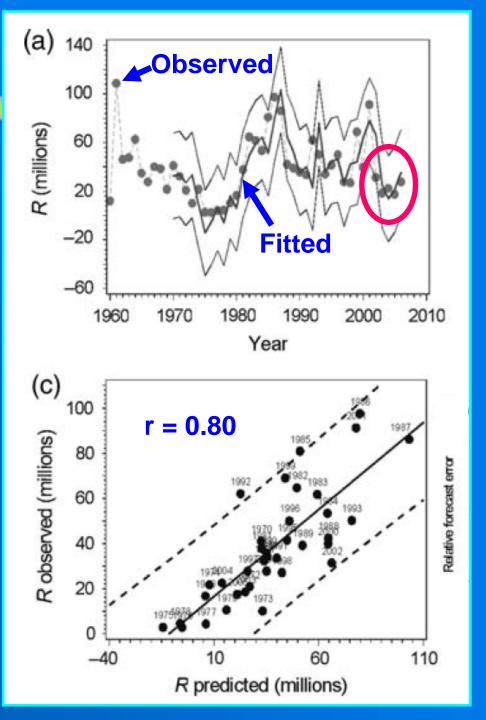
zkhuh=


lag window: 0 ≤ I ≤ 10

Vljqlifdqw#hiihfwv=

- ●DPR#Û6#|uv
- •QDR#Ù 8 # uv

Vshfwudo#Dqdo viv=#Ilwhg#U


- Ilwhg#z bwhu#DPR#uhvhpeohv#U#ryhu#4 < 9304 < ; 4
- Ilwhg#QDR#kdv#dq#lqiohfwlrq#lq#4 < ; 5
- Ilwhg#U#pdwfkhv# revhuyhg#U#zhoo#

Vshfwudo#dqdo|vlv#zdyh#ghfrpsrvlwrq,#xvlgj#frvlgh@lph@prghov

DUIPD [

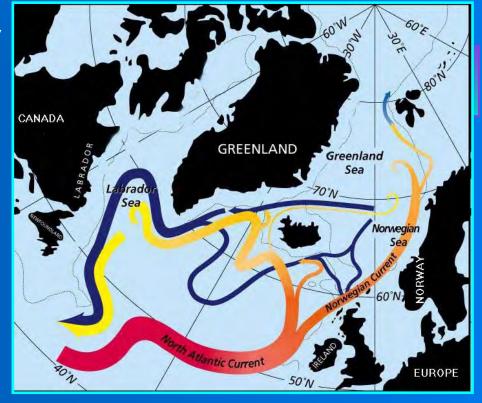
- Edvhg#rq#FFIv#60
- hdu@dj#DPR/#80 |hdu@dj#QDR,#dqg# VD
- Vwurqj #Ilw#ehwzhhq# suhglfwhg#bqg# revhuyhg#U# +S?? 3138,
- Uhfhqw#ghfolgh#bg#U#lv#ilwhg#

Frpsdulvrqv#Dfurvv#Doo#Prghov

- (i) B/H model: $r_{perfomance} = 0.47$, AICC = 33.9607;
- (ii) Ricker model: $r_{\text{perfomance}} = 0.51$, AICC = 33.9069;
- (iii) Segmented regression model: $r_{\text{perfomance}} = 0.49$, AICC = 33.9384;
- (iv) ARIMAX [Equation (4)]: $r_{\text{perfomance}} = 0.80$, AICC = 33.4960;
- (v) Extended Ricker model [Equation (1)]: $r_{\text{perfomance}} = 0.74$, AICC = 33.7532.
- H{whqqhq#U!fnhu#prqho#shuiruphq#ehwwhu#wkdq# rwkhu#6#V@#prqhov1#
- DUIPD [#prgho#shuiruphg#ehvw#lpglfdwlpj#
 vwurqjhu#urch#ri#folpdwh#wkdq#VVE#rq#U1

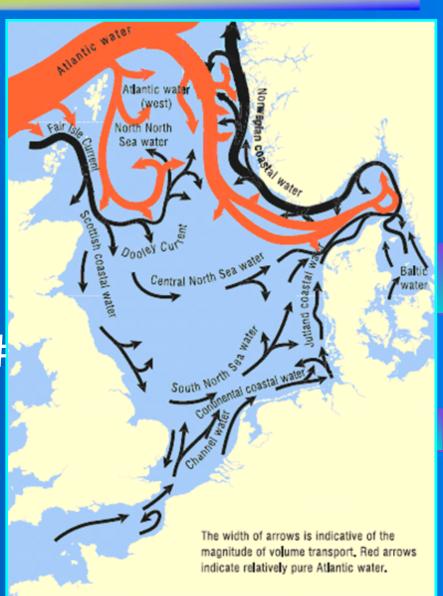
Glyfxvvlrq=#WU#Uhodwlrqvkls

- Ryhuilvkljj#scol|hg#b#uroh#b#srru# uhfuxlwphqw#b#4 < 93 v#) #4 < :3 v
- Vrph#frqiolfwbj #hybhqfh#ri# ghshqghqfh#ri#U#rq#VVE
- Fdqqedolyp#pd | #sduwo | #h {sodly#srru# uhfuxlwphqw#b#uhfhqw# | hduv#h1j 1/# vxpphu#dfrxvwlf#vxuyh | /#533:,

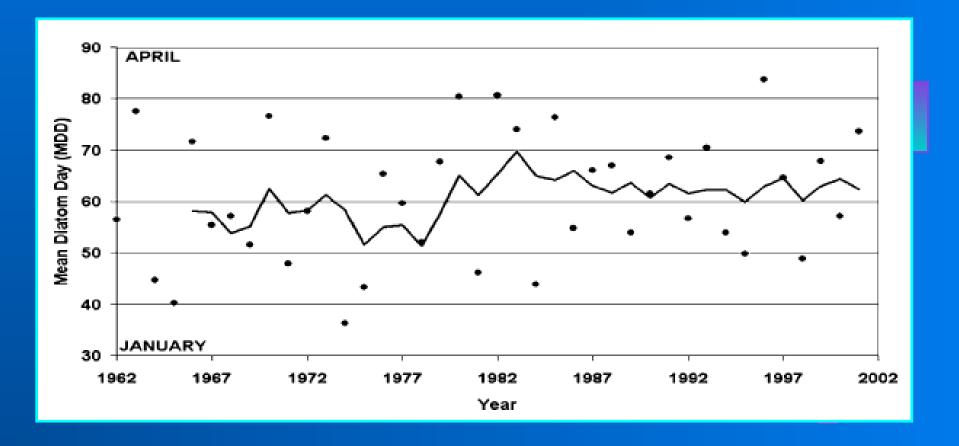

Glyfxvvlrq=#Folodwh#Irufbj

- Dexqgdqfh#ri#hjjv#dqg#vpdco#bduydh# ghwhup bhg#e | #VVE
- Dexqqdqfh#ri#bdujh#bduydh#bqq#
 uhfuxlwphqw#ghwhuplphq#e | #zlywhu#
 hqylurqphqwdo#frqqglwlrqv#
- uhfux hphqw#f | foh#ilwhg#zhoo#e | #
 DPR#xxdj#6#| u,#xxdg#QDR#xxdj#8#| u,
- Wiph#bdjv#pd | #eh#gxh#wr#bdjv#b# dwprvskhulf@rfhdg#frxsobj dqg# wursklf#bwhudfwlrqv

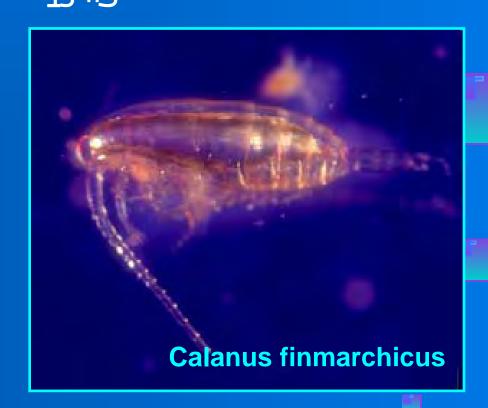
Glvfxvvlrq=#Srwhqwbb#Phfkdqlvpv


Ghfd|#vfdoh#ri#wkh#Qruwk#Dwodqwlf# Fxuuhqw#fq#uhvsrqvh#wr#fkdqjhv#fq# zhvwhuo|#zhg#vwuhvv#fv#6#|hduv#

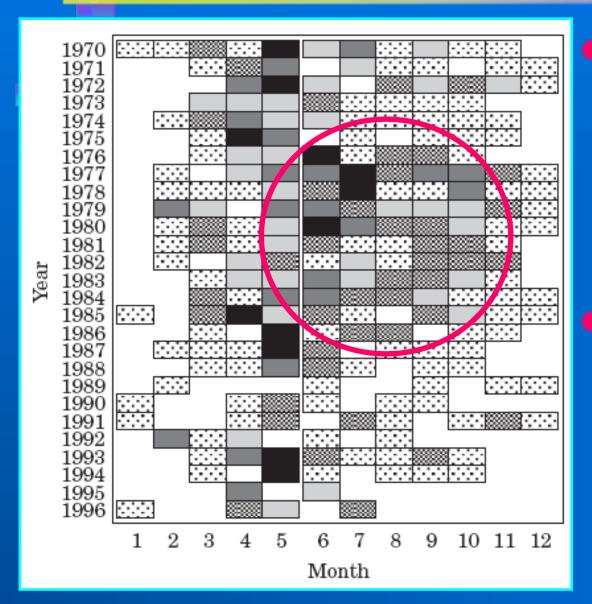
+S by juhh#5 3 3 8 /


Qruwk#Vhd#Rfhdg#Fxuuhgwv

- QZ#hqwu|#ri# Dwodqwlf#zdwhu
- Vrph#zdup#zdwhu# iorz#wkurxjk# Hqjolvk#Fkdqqho
- Zdwhu#h{lww#dorqj#Qruzhjbq#frdvw
- Orz#vdolyw|#frdvwdo#zdwhu

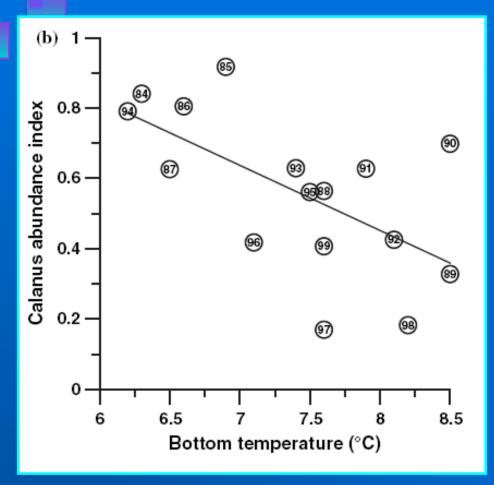

Glvfxvvlrq=#Srwhqwbb#Phfkdqlvpv

ghod | #ri#vsubj #eorrp#uhodwhg#wr# zduphu#VVW#Zbwkluh#) #Pdqo | #5337,



G wfxvvlrq=#Srwhqwbb#Phfkdqlvpv

Svhxgrfdcdqxv#plylwxvdqq#Fdcdqxv# ilpodufklfxvfrpsulvh#pruh#wkdq#wzr# wklqv#ri#wkh#khuulpj#glhw



Glvfxvvlrq=#Srwhqwbb#Phfkdqlvpv

Ghod hg# khuubj# pljudwlrq#iurp# hdvw#b#hduo # 4 < 3 vYdubebw #b# Wbbj#ri#F1# ibpdufklfxv b# QH#Qruwk#Vhd# #Fruwhq#5333,

Glvfxvvlrq=#Srwhqwbb#Phfkdqlvpv

dexqqdqfh#ri# Fdodqxv# ibpdufklfxv b# QH#Qruwk#Vhd# qhjdwlyho # dvvrfbwhq#zwk# erwrp# whpshudwxuh

Nash & Dickey-Colas (2005)

G wfxvvlrq=#Srwhqwbo#Phfkdqlvpv

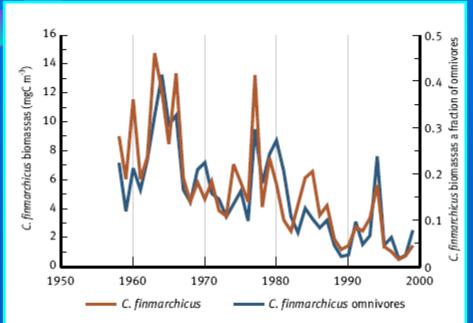


Figure 2. Declining abundance of Calanus finmarchicus in the northern North Sea, and a proportion (by weight) of all omnivorous zooplankton, between 1958 and 1999. Compiled from data supplied by the Sir Alister Hardy Foundation for Ocean Science.

Heath et al. (1999)

- dexqgdqfh#ri#
 Fdbdqxv#
 ilppdufklfxv
 dvvrflbwhg#zlwk#
 QDR
- ghshqqv#rq#vxsso ri#ryhuz bwhubj# F1#ibpdufklfxv yb#Qruzhj bq#Vhd# Ghhs#Zdwhu

Frqfoxvlrqv

- Folpdwh#bdujho | #uhjxodwhv#khuubj# srsxodwlrqv#b#wkh#Qruwk#Vhd
- Folpdwh@ulyhq#phfkdqlvpv#byroyh# erwwrp&s#wursklf#hiihfwv
- Dowkrxjk#wkh#ehvw#prgho#grhv#qrw# hfrusrudwh#VVE/#ryhuilvkhj#pxvw#eh# dyrlghg
- Uhfuxlphqw#iruhfdvw#6 #|hduv#fq# dgydqfh#surylgh#ydoxh#fpirupdwlrq#wr# pdqdjhphqw#ri#wklv#psruwdqw#ilvkhu