POPULATION CHANGES IN SMALL PELAGIC FISH OF THE GULF OF LIONS: A BOTTOM-UP CONTROL?

C Saraux, E Van Beveren, P Brosset, S Bonhommeau, JM Fromentin

Small pelagics symposium 08/03/2016
Background:

Crash in landings

Landings

Sardine

Anchovy

Crash in landings
Background:

Historical landings 1865-2013:

Present level lower than before 1960 ➔ unusual situation

Van Beveren et al 2016

![Graph showing historical landings from 1865 to 2013 for anchovy, sardine, and mackerel. The present level is lower than before 1960, indicating an unusual situation.](image-url)
Background:

ECOPELGOL Project 2012-2015.

Good recruitments ?????
1. Changes in populations

- Smaller fish
- Disappearance of large old sardines

Van Beveren et al. 2014
Emigration or mortality?

Most likely migration: towards Spain

Size distribution of French vs. Spanish landings:

- No appearance of large individuals in Spain
- Very similar distribution

❖ Mortality
❖ Problem occurring at a larger scale
1. Changes in populations

Body condition

= quantity of nutritional reserves

.proxy of available energy

Estimated here by morphometrics, LeCren index

Decrease in condition higher in old individuals ➔ lower survival?

Van Beveren et al. 2014

Brosset et al 2015
1. Changes in populations

- More abundant
- Smaller (low growth & disappearance of older sardines)
- Leaner

Van Beveren et al. 2014
Main goals:

- Fisheries effect
- Predation by tuna or marine mammals
- Population characteristics:
 - Size
 - Age
 - Condition
 - Growth
- Trade-off with reproduction
- Climate and Plankton effect

Predators:
- Small pelagics
- Top-Down

Prey:
- Bottom-Up

Diseases:
- Virus
- Bacteria
- Parasites
2. Top-down processes?

a) Fisheries?

- Low exploitation rate
- Low size selectivity
- No temporal covariation between fishing pressure and fish biomass

Fisheries effect probably low
2. Top-down processes?

b) Predation by tuna?

Size distribution of the tuna pop (fisheries)

DEB \Rightarrow Calories

Stomach contents

Population abundance (plane survey & fisheries)

Van Beveren et al. 2017
2. Top-down processes?

b) Predation by tuna?

- Very low proportion
- Oppurtinistic, no size-selectivity

Similar approach on dolphins predation
- Plane and boat survey -> dolphin abundance
- Stomach content
- Simple allometric energetic model

Lot of simulations

⇒ Population ingested even lower

Van Beveren et al. 2017
Queiros et al. in prep
3. Pathogens and diseases?

1 year monthly sampling (2014-2015):
1) Fresh samples from fisheries (9 * 150 sardines)
2) Large band search (bacteria, parasites & virus)
3) Tissue analyses (autopsy et histology)

Results:
- No macro-parasites
- No virus: whether on culture or by specific PCR (NODA & herpes)
- Very low prevalence of lesions on tissues
- Presence of few bacteria
- Micro-parasites (Prevalence = 77%) ➔ unidentified or coccidies in the liver

Few pathogens, no correlation with fish size or condition and very few lesions. Only micro-parasites.

Comparison with other places ➔ Anyone interested???

Van Beveren et al. 2016
4. Trade-off maintenance / reproduction

- Start reproducing earlier
- Maintain investment

Increase in reproductive effort despite low condition.
At the expense of survival?

Gonado somatic index: \(\frac{W_{gonad}}{W_{fish}} \)
5. Bottom-up processes

Change in diet?

\[\delta^{13}C_{\text{Sample}} = \left(\frac{^{13}C_{\text{Sample}}}{^{12}C_{\text{Sample}}} \right) \left(\frac{^{13}C_{\text{Reference}}}{^{12}C_{\text{Reference}}} \right) - 1 \] \times 1000

Stable Isotopes

Stomach contents

Broset et al. 2015
Broset et al. 2016
5. Bottom-up processes

Stable isotopes

- Smaller isotopic niche, lower δC value
- Higher overlap with sprat ➔ competition?

Stomach contents: after 2010 vs. past

Segregated by period

- Sardines: ➔ fewer cladocerans.
- Anchovy: ➔ smaller copepodes.

Changes in diet: smaller, less energetic prey

Brosset et al. 2016
Summary

Predation by tuna or marine mammals

Fisheries effect

- **Population characteristics**
 - Size
 - Age
 - Condition
 - Growth

- **Diseases**
 - Virus
 - Bacteria
 - Parasites

- **Stomach contents, energetic models, population census**

Plankton effect

- **Diet (isotopes, stomach contents)**

Experiments

- In situ & modelled plankton fields

Trade-off with reproduction

- Harvest rate

PREDATORS

- Top-Down
 - SMALL PELAGICS

PREY

- Bottom-Up

PhD Quentin Queiros, talk in 1h Saanich room
Thanks to...

Elisabeth Van Beveren Pablo Brosset

You!
1. Changes in populations

Link between condition and age

Decrease in condition higher in old individuals ➔ lower survival?

Brosset et al 2015
3. Top-down processes?

b) Predation by tuna?

On size distribution

Opportunistic, no size selectivity

Van Beveren et al. 2017
5. Bottom-up processes

Stable isotopes
- Smaller isotopic niche, lower δC value
- Higher overlap with sprat \Rightarrow competition?

Stomach contents: after 2010 vs. past

- Sardines: \Rightarrow fewer cladocerans.
- Anchovy: \Rightarrow smaller copepodes.

Changes in diet: smaller, less energetic prey

Anchovy
Sardine
Sprat

Brosset et al. 2016
4. Trade-off maintenance / reproduction

Size at first maturity:
- Sardine: 9/10cm now vs. 13cm in the past
- Anchovies: 9cm now vs. 11cm in the past

Start reproducing much earlier

Brosset et al. 2016
4. Trade-off maintenance / reproduction

Gonado somatic index: \(\frac{W_{gonad}}{W_{fish}} \)
- Stable in anchovy
- Stable if not increasing in sardines

Increase in reproductive effort despite low condition. At the expense of survival?
ECOPELGOL Project 2012-2015.

- Low/Intermediate biomass
- Good recruitments

- Sprat
- Anchovy
- Sardine

Biomass

Year

??????