Growth trade-offs for spring- and autumn-hatched larvae

Results from a long-term experiment

Florian Berg, Gaute Seljestad and Arild Folkvord

Funded by the RCN project 254774 (GENSINC)

Survival needs of fish larvae

Winter solstice (24h light cycle, 22.Dec)

Summer solstice (24h light cycle, 21. Jun)

Sun never sets

Sun never rises

Conclusion – Take home message

→ offspring with initial autumn conditions had the same size after one year = same amount of light

Experimental design – Light

Experimental design – Temperature

Final design

3 parental cross

2 replicates per treatment à 1500 larvae

Fed in excess

Kept for 3.5 years

Growth trajectories of offspring

Seasonal conditions

Estimated length-weight relationship

→ Used residuals as indicator for condition

Seasonal conditions

Growth in relation to age for 3.5 years

Growth in relation to light for 3.5 years

Growth in relation to temperature for 3.5 years

Growth comparison between experiments

Conclusion

→ offspring with initial autumn conditions had the same size after one year = same amount of light

Conclusion

This long-term experiment shows

- \rightarrow the plasticity of Atlantic herring
- \rightarrow their ability to adapt to different environments
- \rightarrow their capability to scope with different trade-off situations

Thanks for your attention!

Please feel free to contact me:

→<u>florian.berg@hi.no</u>

Questions