

Small Pelagic Fish: New Frontiers in Science and Sustainable Management

November 7 - 11, 2022 Lisbon, Portugal

Spatio-temporal patterns of feeding intensity and relationship with productivity cycles in Portuguese waters

Susana Garrido & <u>Hugo Mendes</u>

BACKGROUND

- Extensive data of fish feeding intensity allow to investigate environmental shifts and long-term ecosystem fluctuations
- However, weighting stomach contents is a time-consuming task that is generally carried out on small samples/studies collected over a short period of time.
- Fast, empirical indices to classify stomach fullness permits the collection of large temporal dataseries that could allow description basic aspects of feeding biology:
 - differences in feeding intensity between sexes, length classes, and maturity stages
 - Seasonal and interannual variability in feeding intensity
 - Spatial variations in feeding intensity
 - Environmental-related variation in feeding behaviour
 - Variation in feeding intensity could have impact on patterns of abundance

Study variations in the feeding intensity of several small pelagic and medium pelagic in Portuguese waters, using data collected from commercial vessels and research cruises

DATA AVAILABILITY

- Stomach data collected by IPMA in Portuguese coast:
- Commercial data (auction market samples)
- Survey data (e.g. pelagic, demersal, crustacean)
- > 50 species with data on fullness index

 non-regular sampling
 random studies
 irregular sampling protocols

- Qualitative fullness data is available for demersal species e.g. hake, anglerfishes, squids, gurnards
- Pelagic species were selected based on data availability

STOMACH FULLNESS SCALE

Fullness scale:

1= empty 2= almost empty (<50%) 3 = half full (>50%) 4= full (bursting)

CALIBRATION FULLNESS SCALE

J. Mar. Biol. Ass. U.K. (2005), **85**, 425–431 Printed in the United Kingdom

The use of stomach fullness and colour indices to assess Sardina pilchardus feeding

Maria Emília Cunha*, Susana Garrido and Joaquim Pissarra

- No published calibration for other pelagic species
- stomach weight (and contents) not available

ICES Journal of Marine Science Advance Access published October 24, 2008

Horse mackerel (*Trachurus trachurus*) stomach fullness off Portugal: index calibration and spatio-temporal variations in feeding intensity

Susana Garrido, Alberto G. Murta, Ana Moreira, Maria João Ferreira, and Maria Manuel Angélico

Page 1 of 8

However, knowledge exchange between samplers

DATA DESCRIPTION – COMMERCIAL & SURVEYS

Specie	S	Habitat	Size Guild*	Trophic Guild*	Fisheries Guild*	Nr. Market/ survey	Year range	Diet
Horse mac	kerel	Semi-pelagic	small pelagic	pelagic piscivore	Pelagic	68560 65577	1987-2021 1981-2021	Planktivore /piscivore
Europea sardino PIL	an e	pelagic	Small pelagic	Pelagic planktivore	Pelagic	72872 53743	2003-2021 2002-2021	planktivore
Atlantic c macker VMA	hub el	Semi-pelagic	Small pelagic	Pelagic planktivore	Pelagic	10847 9101	2010-2021 2010-2021	Planktivore /piscivore
Anchov ANE	/у	Pelagic	Small pelagic	Pelagic planktivore	Pelagic	4163 17169	2011-2021 2005-2022	planktivore
Atlanti Macker	ic el	Semi-pelagic	medium pelagic	pelagic piscivore	Pelagic	2702 4079	2010-2021 2011-2021	Planktivore /piscivore
Blue whit	ting	Bathypelagic /demersal	medium bathypelagic	pelagic planktivore	pelagic	5879 6965	2016-2021 2014-2021	Planktivore /piscivore
Blue jao macker	ck el	Semi-pelagic	small pelagic	pelagic piscivore	Pelagic	3549 1541	2015-2021 2009-2019	Planktivore /piscivore
Bogue	2	Semi-pelagic	small pelagic	pelagic piscivore	Pelagic	920	2013-2021	Planktivore /piscivore
Mediterra St horse mac	nean kerel		small pelagic		Pelagic	382	2009-2019	Planktivore /piscivore

DATA DESCRIPTION – COMMERCIAL & SURVEYS

1981 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

year

- Biological parameters
 - Sex
 - Maturation
 - Length
 - Lengui
- Commercial data
 - Seasonal
 - interannual
 - Spatial/Port
- Survey data
 - Interannual
 - diel cycle
 - Spatial/Depth
- Environmental variables
 - SST
 - Salinity

$$PI_i = \log\left(\frac{p_i}{p_{i+1} + \ldots + p_n}\right)i = 1, \ldots, n-1,$$

Rindorf and Lewy (2001)

Ordinal regression for each biological variable/species

GAM with binomial response/logit link

FULLNESS vs BIOLOGICAL - SEX

• ANE-VMA

FULLNESS vs BIOLOGICAL - MATURATION

FULLNESS vs BIOLOGICAL - LENGTH

ANE-VMA vs PIL-HOM

Faster growth – higher feeding intensity

- > No variability within sex
- Developing/maturation stages increases fullness levels. No changes when reaching resting/post-spawing
- Increase of fullness with length
- Mixed variability within species/biological variables
 - PIL and HOM similar behaviour high percentage of empty stomachs fullness seasonality in sardine
 - ANE and VMA low percentage of empty stomach feeding intensity

- Biological parameters
 - Sex
 - Maturation

Length ٠

- Commercial data
 - Seasonal ٠
 - interannual
 - Spatial/zone/port ٠

Ordinal regression with interaction term for each biological variable/species

$$PI_{i} = \log\left(\frac{p_{i}}{p_{i+1} + \ldots + p_{n}}\right)i = 1, \ldots, n-1,$$

Rindorf and Lewy (2001)

GAM with binomial response/logit link

PI_all ~ s(fullness, year) + s(fullness, month) + length + zone R-sq.(adj) = 0.189 Deviance explained = 17.2%

Slight decrease of fullness during winter

- Interannual variability
- Effects from several species mixed

SEASON/YEAR - SARDINE

PI_pil ~ s(fullness, year) + s(fullness, month) + length R-sq.(adj) = 0.204 Deviance explained = 18.6%

Slight increase of fullness during summer

Interannual variability

A have a second have a second h

SEASON/YEAR - HORSE MACKEREL

PI_hom ~ s(fullness, year) + s(fullness, month) + length R-sq.(adj) = 0.274 Deviance explained = 25.8%

- > No seasonality
- Interannual variability

- Biological parameters
 - Sex •
 - Maturation ٠

Length ٠

- Commercial data
 - Seasonal ٠
 - interannual ٠
 - Spatial/Port •
- Survey data
 - Interannual •
 - diel cycle ٠
 - Spatial/Depth •

$$PI_{i} = \log\left(\frac{p_{i}}{p_{i+1} + \ldots + p_{n}}\right) = 1, \ldots, n-1,$$

Rindorf and Lewy (2001)

GAM with binomial response/logit link

SURVEY VARIABLES EFFECTS - ALL SPECIES

PI_all ~ s(fullness, year) + s(fullness, lat) + s(fullness, hour) + s(fullness, depth) R-sq.(adj) = 0.256 Deviance explained = 22.5%

SURVEY VARIABLES EFFECTS - SARDINE

Pl_all ~ s(fullness, year) + s(fullness, lat) + s(fullness, hour) + s(fullness, depth) R-sq.(adj) = 0.352 Deviance explained = 32.3%

lat

depth

SURVEY VARIABLES EFFECTS - HORSE MACKEREL

PI HOM ~ s(fullness, year) + s(fullness, lat) + s(fullness, hour) + s(fullness, depth) R-sq.(adj) = 0.546 Deviance explained = 50.7 %

depth

- Biological parameters
 - Sex
 - Maturation

- Length
- Commercial data
 - Seasonal
 - interannual
 - Spatial/Port
- Survey data
 - Interannual
 - diel cycle
 - Spatial/Depth
 - Environmental variables
 - SST
 - Salinity

Ordinal regression with interaction term for each biological variable/species

$$PI_{i} = \log\left(\frac{p_{i}}{p_{i+1} + \ldots + p_{n}}\right)i = 1, \ldots, n-1,$$

Rindorf and Lewy (2001)

GAM with binomial response/logit link

FEEDING PATTERNS VS ENVIRONMENTAL VARIABLES

- No significant linear or non-linear effects of in-situ salinity and temperature variables
 - Further exploration needed as temperature is a key factor governing metabolism and behaviour.
- Other key factors to explore:
 - Available prey (plankton-density related variables)
 - Currents / Winds
 - Turbulence / light levels

- No variability within sex
- Developing/maturation stages increases fullness levels. Also related to increase of fullness with length
- Fullness levels has the potential to inform on life cycles fluctuations and species behaviour and resilience
- Easy/cheap method that can inform on the trophodynamic behaviour of several species/ecosystem
- Given the potential, calibration of stomach levels for several species is advised
- The study of the variability of fish feeding intensity in space and time for long periods of time allows the investigation of the degree of adaptability of the fish to different long-term ecosystem fluctuations.

Obrigado!

Questions and suggestions

