Drastic decline in zooplankton in the inshore Western Baltic Sea

Līna Livdāne^{1,2}, Patrick Polte¹, Annegret Finke^{1,2}, Gesche Winkler³

¹Thünen Institute of Baltic Sea Fisheries, Rostock, Germany

² University of Hamburg, Institute for marine Ecosystem and Fisheries Science, Hamburg, Germany ³ Université du Québec à Rimouski UQAR, Québec, Canada

Decrease in larval index of Western Baltic herring

Can decrease in larvae density of Western Baltic herring be explained by changes in their prey at first feeding?

Zooplankton sampling in the Greifswald Bay

4 samples / week (Mar-Jun~17 weeks) 2008-2020

Sweden Denmark Denmark Control Species composition, abundance Copepods staged N, C1-3, C4-5, M, F

Annual mean zooplankton density in 2008-2020

Anomaly plots of the key taxonomic categories

Timing of the spring chlorophyll peak vs. density of key taxonomic categories

Conclusions

- The clustering algorithm indicates a change in the time series in between 2012 and 2013
- Climate change has lead the phytoplankton bloom to advance in spring
- Zooplankton taxonomic categories that have decreased are also the ones that depend on phytoplankton
- Herring larve density decreased along the small zooplankton

Coniss cluster plot

Thank you!

lina.livdane@gmail.com

lina.livdane@thuenen.de

/Lina-Livdane