Assessing external environmental drivers for the Moroccan Chub Mackerel (Scomber colias) population dynamics

GhoufraneDerhy, Diego Macías , Karima Khalil , Khalid Elkalay, Margarita María Rincón

Stock population dynamics

Changes in stock population dynamics may be caused by a combination of natural and fishing effects or other factors.

$$
B_{t+1}=B_{t}+R+G-M-C
$$

Estimating population dynamics trends ?

One keyword is missing, which is the environment.

Changing in environmental conditions

May violates the key assumptions of traditional stock assessment models

Small pelagic stocks in CECAF areas

- Small pelagic fish are highly dynamic fish populations, influenced by complex processes;
- Their dynamic and complex life-cycles often cover wide ocean areas, which is why many small pelagic fish stocks are shared between different coastal states;
- Understanding the factors triggering the observed changes in small pelagic stocks entails research and deeper analyses.

I Improve oceanographic modeling for understanding ! fisheries biology and population dynamics.

Total small pelagic species and sardine catches in the subregion by year with and without Sardine catches (FAO, 20021)

Chub mackerel population dynamics

Environmental impacts on recruitment tend to be significant drivers of population variability for small pelagic species such as Chub mackerel (Scomber colias).

Chub mackerel catches per CECAF areas (FAO, 2020)

However, fishing can affect natural dynamics

A population's response to its environment may in fact changed by the impacts of fishing so the processes art interrelated

Methodology

Adopted approach

Collecting all available data
Fisheries and surveys data

Estimating chub mackerel population trend
Using a stock assessment modEFiCTmodel)

Correlation analysis between stock abundance trend and environmental covariates

Define the environmental factors affecting the stock abundance

Develop an integrated stock assessment mode

Chub Mackerel stock

Center and south of Moroccan Atlantic coast
17\%

Of Morocco's total small pelagic stock

High level of organic production (1997.419 mgCm-2day-1)

Methodology

Adopted approach

Collecting all available data
Fisheries and surveys data

Estimating chub mackerel population trend
Using a stock assessment modEFiCTmodel)

Correlation analysis between stock abundance trend and environmental covariates

Define the environmental factors affecting the stock abundance

Develop an integrated stock assessment mode Including the impact of environmental variables

- Catches data (1990-2018) [FAO, 2020]
- Abundance index data (3 indices from Amir Moulay Abdellah survey, Nansen survey and Atlantida acoustic survey)

Nobs I: 17

Nobs I: 18

Nobs I: 13

Methodology

Collecting all available data
Fisheries and surveys data

Estimating chub mackerel population trend
Using a stock assessment modEFiCTmodel)

Correlation analysis between stock abundance trend and environmental covariates

Define the environmental factors affecting the stock abundance

Develop an integrated stock assessment mod Including the impact of environmental variables

Estimating chub mackerel population trend

Using a stock assessment model-Surplus Production model in iContinuous Time (SPiCT)-

- State space model, incorporating dynamics of fisheries and biomass;
- Two statistical parts:

The process equations
Biomass: $d B_{t}=r B_{t}\left(1-\left[\frac{B_{t}}{K}\right]^{n-1}\right) d t-F t B t d t+\sigma_{B} B_{t} d W_{t}$
Fishing: $\quad \operatorname{dog}\left(F_{-} t\right)=f\left(t, \sigma_{-} F c\right)$

The observation equations

Catch: $\log \left(C_{t}\right)=\log \left(\int_{t}^{t+\Delta} F_{s} B_{s} d s\right)+\epsilon_{t}, \quad \epsilon_{t} \sim N\left(0,\left[\beta \sigma_{F}\right]^{2}\right)$ Index: $\quad \log \left(1 _t\right)=\log \left(q B _t\right)+e _t, \quad e_{-} t \sim N\left(0,\left[\alpha \sigma_{-} B\right]^{\wedge} 2\right)$

- Model outputs

Relative biomass

$1990 \quad 2000 \quad 2010 \quad 2020$
Time

Relative fishing mortality

$1990 \quad 2000 \quad 2010 \quad 2020$ Time

B/K

Years to Bmsy

Estimating chub mackerel population trend

Using a stock assessment model -Surplus Production model in iContinuous Time (SPiCT)-

The relative biomass (B/BMSY) trend used to explore the relationship between the estimated chub mackerel stock abundance and different external environmental drivers

Methodology

Collecting all available data
Fisheries and surveys data

Estimating chub mackerel population trend
Using a stock assessment modEFiCTmodel)

Correlation analysis between stock abundance trend and environmental covariates

Define the environmental factors affecting the stock abundance

Develop an integrated stock assessment mode

Correlation analysis between stock abundance trend and environmental covariate
Define the environmental factors affecting the stock abundance

Correlation analysis between stock abundance trend and environmental covariate
Define the environmental factors affecting the stock abundance

- Spatially explicit analysis for the correlation between B/BMSY and the selected environmental variables

- Anomalies for the different environmental variables in years of high B/BMSY

Conclusions

- Maximum R values for are located in the southern zone
- Strong upwelling intensity in the south \longrightarrow Accompanied with important catches (INRH, 2019; FAO, 2020)

High biomass of recruited individuals

$>$ In our case, the turbulence is the only limiting factor for recruitment
>Adome shaped relationship between environmental factors and adult biomass

Thanks!

Any questions?

You carfind me at: Ghoufrane.derhy@ced.uca.ma Ghoufrane123.derhy@gmail.com

