

Integrating forage surveys, diet studies, and trait information to explore prey preferences of albacore tuna (*Thunnus alalunga*)

Miram Gleiber, Natasha Hardy, Caitlin Morganson, Catherine Nickels, Barbara Muhling, Jarrod Santora, Richard Brodeur, Brian Wells, Toby Auth, Dan Madigan, Elliott Hazen, Larry Crowder, Stephanie Green

How will the abundance & distribution change into the future?

Predators are selective

Proportion prey in diet

Trait-based predictions for future change

Cold Warm Average → Warming ocean Climate regimes

Trait-based predictions for future change

Predicted probability of prey traits in diets

Pelagic Species Trait Database

<u>**58 traits</u>**: Habitat, Behavior, Morphology, Nutrition</u>

<u>512 sp</u>: Fish, Cephalopods, Crustaceans, Other Inverts

Conserved

Switching traits with climate

No relationship

Cold Warm Average → Warming ocean Climate regimes

Albacore Tuna in the California Current Ecosystem (CCE)

- Present June October
- Northward distribution shift (Frawley et al, 2020)
- Diverse diet variable with environmental conditions (Nickels et al *in review*)

>100km/day Dive >100m Juveniles: <1m Do albacore show selective patterns of predation across taxa and/or traits?

Which prey species are suitable for comparison between forage community surveys albacore diets?

уре	Dataset	Collector	Years	n
lbacore iets	Nickels et al (<i>in review</i>)	NOAA SWFSC	2007 – 2019*	750
	Madigan et al (2015)	Dan Madigan	2008 - 2010	85
	Glaser (2010)	Sarah Glaser	2005 - 2006	371
rawl urveys	Rockfish Recruitment & Ecosystem Assessment Survey	NOAA SWFSC	2005 – 2018*	1684
	Stock Assessment Improvement Program	NOAA NWFSC	2005 - 2011	499
	Coastwide Cooperative Pre- Recruit Survey	NOAA NWFSC	2011 – 2019?	212
			*Ongoing sampling	

2005 - 2019

Туре	Dataset	Collector	Years	n	
Albacore	Nickels et al (in review)	NOAA SWFSC	2007 - 2019*	750	
Diets	Madigan et al (2015)	Dan Madigan	2008 - 2010	85	
	Glaser (2010)	Sarah Glaser	2005 - 2006	371	
Trawl Surveys	Rockfish Recruitment & Ecosystem Assessment Survey	NOAA SWFSC	2005 – 2018*	1684	
	Stock Assessment Improvement Program	NOAA NWFSC	2005 - 2011	499	
	Coastwide Cooperative Pre- Recruit Survey	NOAA NWFSC	2011 – 2019?	212	
			*Ongoing samp	ampling	

Cat Nickels

Sarah Glaser Dan Madigan

Туре	Dataset	Collector	Years	n
Albacore	Nickels et al (in review)	NOAA SWFSC	2007 - 2019*	750
Diets	Madigan et al (2015)	Dan Madigan	2008 - 2010	85
	Glaser (2010)	Sarah Glaser	2005 - 2006	371
Trawl Surveys	Rockfish Recruitment & Ecosystem Assessment Survey	NOAA SWFSC	2005 – 2018*	1684
	Stock Assessment Improvement Program	NOAA NWFSC	2005 - 2011	499
	Coastwide Cooperative Pre- Recruit Survey	NOAA NWFSC	2011 – 2019*	212
			*Ongoing sampling	

Jarrod Santora John Field Ric Brodeur Brian Wells Toby Auth

Standardizing Datasets

Use broader resolution (E.g. decapods combined) Proportions p = taxon # / total # $\%N = \overline{p} \times 100\%$ <1%N 158 taxa -> 32 4% diet 6% survey

*Methods follow Portner et al (2022), Nickels et al (in review)

2015

2020

2010

0.00

2005

2010

2015

Fish

Cololabis.saira Engraulis.mordax Merluccius.productus Myctophidae.spp. Paralepididae.spp. Paralichthyidae.spp. Pleuronectidae.spp. Sardinops.sagax Scomber.japonicus Sebastes.spp. Trachurus.symmetricus

Cephalopods

Abraliopsis.spp. Pleurobrachia.spp. Berryteuthis.spp. Aequorea.spp. Doryteuthis.opalescens Pteropoda.spp. Gonatopsis.spp. Pyrosoma.atlanticu Gonatus.spp. Thaliacea.spp. Octopoda.spp. Octopoteuthis.spp. Onychoteuthis.borealijaponica Euphausiidae.spp. Decapoda.spp.

Crustaceans

Other inverts

Interannual & regional variability Diet & survey %N differ

Amphipoda.spp.

Matching data in space & time

-120

-130

-120

-130

-120

-130

-120

-130

-120

-130

*Thompson et al. (2020)

Identify species unsuitably sampled

Frequency of Occurrence (FO) = % of stomachs or trawls a taxa is present

- Sardinops sagax ۲
- Engraulis mordax
- Cololabis saira

Paralepididae spp.

Sebastes spp.

- Trachurus symmetricus
 - Fish
- Pleuronectidae spp.
- Scomber japonicus
- Merluccius productus
- Myctophidae spp.
- Paralichthyidae spp.
- Syngnathidae spp.
- O. borealijaponica
- Octopoda spp.
- Gonatus spp.
- Gonatopsis spp.
 - Octopoteuthis spp.
- Doryteuthis opalescens Abraliopsis spp.
- Berryteuthis spp.
- Amphipoda spp.
- Decapoda spp. •

•

- Euphausiidae spp.
 - Pteropoda spp. Pyrosoma atlanticum
- Thaliacea spp.
- Aequorea spp.
- Pleurobrachia spp.

Cephalopod

Other inverts

Crustacean

20

Identify species unsuitably sampled

Sardinops sagax ۲

- Engraulis mordax •
- Cololabis saira
- Paralepididae spp.
- Trachurus symmetricus
 - Fish
- Pleuronectidae spp.
- Scomber japonicus
- Merluccius productus
- Myctophidae spp.
- Paralichthyidae spp.
- Syngnathidae spp.
- O. borealijaponica
- Octopoda spp.
- Gonatus spp.
- Gonatopsis spp.
- Octopoteuthis spp.
- Abraliopsis spp.
- Berryteuthis spp.
- Amphipoda spp.
- Decapoda spp.
- - Pteropoda spp.
- Pyrosoma atlanticum
- Thaliacea spp.
- Aequorea spp.
- Pleurobrachia spp.

Cephalopod

- Euphausiidae spp.
- Other inverts Crustacean

0

Albacore prey selectivity

Index

Vanderploeg & Scavia's Relativized Electivity (E*) Index

Albacore prey selectivity

Taxa-based:

Trait-based: 13 traits

- %N_{taxa} summed across trait forms
- E* calculated separate for each trait

Diet > Survey (+) 8 Sardines 7 Clubhook squid 10 Octopuses Annually variable **1** Anchovies 4 Amphipods Barracudinas **3** Rockfishes E* Index Survey > Diet (-) 2 Euphausiids 9 Myctophids 6 Decapods 5 Hake

Rank in %N_{diet}

• %N_{survey}= 0 0.5 0.0 -0.5 $%N_{diet} = 0$

Trait-based:

ed low

North

Consistent, high (+) selection Coastal Silvered Countershaded **Non-diel migrants** Undefended Non-transparent Shoaling/Schooling **Protein-rich Energy-rich**

Same traits in both regions!

Selection variance minimized with trait-based approach

Conclusions

- Albacore prey <u>selectivity</u> provides <u>different</u> indicators of predator-prey interaction strength vs. <u>only diet</u>
- Traits <u>minimizes variability</u> in predator-prey relationships
- <u>Framework</u> for integrating trawls & diet across multiple surveys for <u>comparative analyses</u>

Want to learn more? Check out these talks <u>tomorrow</u> from our team!

Dr. Natasha Hardy

Modelling diet shifts in a pelagic predator – albacore tuna – in relation to forage community composition and prey trait information across a 2005–2019 time series.

9:40am, Session 1, Auditorio 2

Alana Krug-MacLeod

Effect of climate state on variation in nutritional value for small pelagic species

12:00pm, Session 4, Sala 1

Acknowledgements

Trait data collection team: Zachary Roote, Caitlin Morganson, Alana Krug-MacLeod, Iris George, Cindy Matuch, Cole Brookson

Project partners: Mike Jacox, Barb Muhling, Elliot Hazen, Steven Bograd **FUTURE SEAS**

Discussion & feedback: Elan Portner (Scripps) UPCOMING WEBINAR: USING TRAITS-BASED APPROACHES TO FACILITATE CLIMATE ADAPTATION IN FISHERIES MANAGEMENT

Dec. 1 11am PT 7pm GMT