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Loss of marine biodiversity

Improve the knowledge about population dynamics of main
fishing resources

Restoration of marine biodiversity

Spatio-temporal analysis of abundance indexes

Scope of the work
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PELAGO surveys

Estimate the abundance of sardine
inhabiting the Portuguese shelf.

Database

Time: 20 annual surveys
from 2000 to 2020,
except 2012.

Study region: Portuguese continen-
tal coast and Gulf of
Cadiz.

Interest: Biomass index (NASC,
𝑛2 𝑛𝑚−2).

Geographic
information:

Latitude and longitude.

Additional
information:

Sectors and geo-
graphical areas.

Motivating data
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Chlorophyll Temperature Bathymetry

ocean currents
ocean currents
Direction of ocean currents

ocean currents
Intensity of

Environmental data
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Species Distribution Data often implies residual spatial
autocorrelation

• Non-consideration of important environmental
conditions.

• Intrinsic factors: competition, dispersal, aggregation,
etc.

Geostatistics

Problem and Objective
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Problem and Objective
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Problem and Objective
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Main aims

• Estimate the spatio-temporal distribution of sardine in
western and southern Iberian waters.

• Understand sardine dynamics over time and space.
• Identify the main drivers of sardine spatial dynamics.

To consider:

• Complex spatio-temporal dynamics.
• Excess of zeros.
• Difference between occurrence process and biomass

process under occurrence.
• Relationship between response and environmental
conditions with a time lag.

Problem and Objective
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Hierarchical model
Series of levels linked by probability functions.

𝑌s𝑡 - Biomass process at location s and time 𝑡
𝑍s𝑡 - Occurrence sub-process

Distribution of biomass index

[𝑌s𝑡 ] = [𝑍s𝑡 ] [𝑌s𝑡 | (𝑍s𝑡 = 1)]

=

{
1 − 𝜋s𝑡 , 𝑦s𝑡 = 0

𝜋s𝑡 [𝑌s𝑡 | (𝑍s𝑡 = 1)] , 𝑦s𝑡 > 0

such that:

𝑍s𝑡 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋s𝑡 )
𝑌s𝑡 | (𝑍s𝑡 = 1) ∼ 𝐺𝑎𝑚𝑚𝑎(𝑎s𝑡 , 𝑏s𝑡 )

Two-part model
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Two-part model can be defined by:

𝑙𝑜𝑔(`s𝑡𝑖) = 𝛼 +
𝑝∑︁
𝑗=1

f (𝐾 (𝑋 𝑗s𝑡𝑖 , 𝑐, 𝑙)) + 𝛾𝑡 +𝑊s𝑡

𝑙𝑜𝑔𝑖𝑡 (𝜋s𝑡𝑖) = 𝛼′ +
𝑝′∑︁
𝑗=1

f ′ (𝐾 (𝑋 ′
𝑗s𝑡𝑖 , 𝑐, 𝑙)) + 𝛾′𝑡 + 𝑘𝑊s𝑡

time lag 𝑐 + 𝑙 in days from 𝑖𝑡ℎ day of the survey in year 𝑡,
smoother function f of the 𝑗 𝑡ℎ covariate 𝑋 𝑗s𝑡𝑖 ,
spatio-temporal structure𝑊s𝑡 ,
unstructured temporal effects 𝛾𝑡 and 𝛾′𝑡 .

Two-part model
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𝑊s𝑡 = 𝛿𝑊s(𝑡−1) + bs𝑡

1 |𝛿 | < 1

2 bs𝑡 is is a zero-mean GF with spatio-temporal covariance:

𝐶𝑜𝑣(bs𝑡 , bu 𝑗 ) =
{

0 𝑖 𝑓 𝑡 ≠ 𝑗

𝐶𝑜𝑣(bs, bu) 𝑖 𝑓 𝑡 = 𝑗

such that 𝐶𝑜𝑣(bs, bu) is given by Matérn spatial covariance
with partial variance 𝜎2 and range 𝜙.

Spatio-temporal structure with AR(1) process
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𝐾 (𝑋 𝑗s𝑡𝑖 , 𝑐, 𝑙) =
𝑙∑︁

𝑞=−𝑙
𝑤𝑐−𝑞𝑋 𝑗s𝑡 (𝑖−(𝑐−𝑞) )

• 𝑤𝑐−𝑞 = 1√
2𝜋
𝑒𝑥𝑝

{
− 𝑞2

2ℎ2

}
• 𝑋 𝑗s𝑡 (𝑖−(𝑐−𝑞) ) - j𝑡ℎ covariate

observed in day 𝑖 − (𝑐 − 𝑞)
of year 𝑡

• On the 𝑖𝑡ℎ day, the
maximum effect of 𝑋 𝑗
occurs for lag 𝑐

Kernel application 𝐾 (., ., .)
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Presence/absence modelling:

𝑙𝑜𝑔𝑖𝑡 (𝜋s𝑡𝑖) = 𝛼1 +
𝑝′∑︁
𝑗=1

f (𝐾 (𝑋 ′
𝑗s𝑡𝑖 , 𝑐, 𝑙)) + 𝛾′𝑡 + 𝑘𝑊s𝑡

1 If the biomass is only affected by chlorophyll on the same day, then
𝐾 (𝐶𝐻𝐿s𝑡𝑖 , 0, 0) = 𝐶𝐻𝐿s𝑡𝑖

2 If the biomass is affected by chlorophyll 14 days ago, then
𝐾 (𝐶𝐻𝐿s𝑡𝑖 , 14, 0) = 𝐶𝐻𝐿s𝑡 (𝑖−14)

3 If the biomass is affected by chlorophyll 14 days earlier
and 2 days before and after, then
𝐾 (𝐶𝐻𝐿s𝑡𝑖 , 14, 2) = 𝑤16𝐶𝐻𝐿s𝑡 (𝑖−16) + 𝑤15𝐶𝐻𝐿s𝑡 (𝑖−15) +
𝑤14𝐶𝐻𝐿s𝑡 (𝑖−14) + 𝑤13𝐶𝐻𝐿s𝑡 (𝑖−13) + 𝑤12𝐶𝐻𝐿s𝑡 (𝑖−12)

Examples of Kernel application
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Advantages

• It allows to incorporate prior information.
• Information and uncertainty about all the unknown can

be better (and easily) expressed in terms of probability
distributions.

• It might more easily handle with inference and
prediction (Banerjee, Carlin, and Gelfand 2004).

Inference method
INLA approach was used to approximating the posterior
marginals of the latent GF (Rue, Martino, and Chopin 2009).

https://www.r-inla.org/

Bayesian perspective
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• Various combinations of 𝑐 and 𝑙 were tested.

• Data from the west and south Iberian coasts are studied
separately.

• Spatial predictions over the entire study region were
obtained for a "representative day" of each survey for
the total 21 years.

Some highlights
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Effects on west coast Effects on south coast

*vertical line - quantile 80%

Results: Environmental effects for the presence
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Effects on west coast Effects on south coast

*vertical line - quantile 80%

Results: Environmental effects for the biomass
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Results: Predicted occurrence
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Results: Predicted biomass
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Results: Occupancy areas
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Persistent rare (unfavourable) and preferred (favourable)
zones

Results: Favourable and unfavourable zones
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On going work

• Apply this methodology to the anchovy data.

Future work

• Model the spatio-temporal distribution of sardine from
data obtained from commercial fisheries, taking into
account preferential sampling.

• Joint modelling fishery-dependent and
fishery-independent data.

On going and Future work
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