The impact of natural mortality on reference points and management strategies of forage fish populations

Nis S Jacobsen ${ }^{1}$

Introduction - Forage fish and natural mortality

How can we estimate natural mortality

- Multispecies models
- In integrated assessments as either a random walk, or a constant variable
- Life history parameters
- Guessing?

- But mostly we do not.....

DTU

Issues

- Changes in natural mortality can't be observed
- In models the signal is hard to distinguish from recruitment, selectivity and fishing mortality
- Data doesn't support estimation of time varying parameters
- Sufficient data is rarely available to perform full
 integrated age based models
- It's uncertain what changes in time varying mortality does to management of exploited stocks

Methods - management strategy evaluation

Research questions

How does a surplus production model of forage fish perform, if natural mortality is changing over time?

Which harvest control rule performs best for a forage fish with time varying natural mortality?

What happens if M is misspecified?

Sometimes the variation goes elsewhere when the operating model has time varying mortality

σ_{R} : Estimated recruitment variability
σ_{M} : Estimated natural mortality variability

Jacobsen et al 2018
Model estimations
A: Time varying mortality
Model
B: Deterministic
C: Recruitment deviations
D: Recruitment deviations and time varying mortality

Operating model

- Age based model
- Natural mortality assumed to be constant among ages
- Life histories determined by forage fish in the RAM stock assessment database (supplemented by FishLife) ($\mathrm{n}=20$)
- Recruitment is autocorrelated, and size of deviations depend on life history parameters

Natural mortality scenarios

- Four natural mortality scenarios

Estimation model

- Pella Tomlinson surplus-production model
- State space version that estimates interannual variability as random effects (process error)
- The model uses an annual survey (with uncertainty σ^{2}) and annual catch (with uncertainty $\sigma^{2}{ }_{C}$) as input data
- Estimates B_{t}, C_{t} as random effects

$$
\begin{gathered}
S P_{t+1}=\left(m \gamma\left(\frac{B_{t}}{K}\right)-m \gamma\left(\frac{B_{t}}{K}\right)^{n}\right) \epsilon_{t} \\
\gamma=\frac{n^{\frac{n}{n-1}}}{n-1} \quad m=\frac{r K}{n^{\frac{n}{n-1}}}
\end{gathered}
$$

$$
\epsilon_{t} \sim N\left(0, \sigma_{B}^{2}\right)
$$

- $r \mathrm{~K}, \mathrm{q}$ (survey catchability), and $\sigma_{B}^{2} \sigma^{2}{ }_{S}, \sigma_{C}{ }_{C}$ as fixed effects

Harvest control rules

- Fmsy
- CFP
- Bescape

Results - How well a state space surplus production model estimate biomass?

Which harvest control rule performs best?

Which harvest control rule performs best?

Influence of life history parameters

Conclusions

- Changes in natural mortality does not significantly change how well biomass is estimated due to the inherent high variability
- Directional natural mortality can lead to poor estimation of states
- Life history parameters impacts estimation

- Fmsy seemed to perform best in these scenarios in comparison with the other control rules

Perspectives and lessons learned

- Contrast in historical data is important to gauge changes in productivity
- Time varying productivity can be informative but hard to estimate
- Is Fmsy or MSY really attainable long term reference points if they are changing over time?
- Empirical harvest control rules may provide better options for short lived species such as

Photo: Getty images forage fish

- State space models are efficient at identifying interannual variability regardless of the source

Thank you

OTTO MØNSTEDS FOND

CARISBERGFONDET

Nis Sand Jacobsen
DTU Aqua, Technical University of Denmark

Email: nsja@aqua.dtu.dk
Twitter: @nissandjac

