

Modeled Impact of Dynamic Dust Deposition on Pacific Ocean Biogeochemistry Liz Drenkard¹ (liz.drenkard@noaa.gov)

Jasmin John^{2,1}, CharlieStock¹, Hyung-Gyu Lim^{1,3}, John Dunne¹, Paul Ginoux¹, Jessica Luo¹

¹NOAA OAR Geophysical Fluid Dynamics Laboratory, ²NOAA OAR Atlantic Oceanographic and Meteorological Laboratory, ³Scripps Institution of Oceanography

CMIP6 models project increasing atmospheric dust deposition to the equatorial Pacific Ocean under elevated radiative forcing futures

Shared socioeconomic pathways (SSPs¹) describe possible future scenarios given factors such as global development, policy decisions, and the resultant greenhouse gas emissions and radiative forcing over the next century. Several modeling centers contributed output from historical and SSP projection experiments to the Sixth Coupled Model Intercomparison Project (CMIP6) that included diagnostics for dust deposition. Here we show the multi-model (n = number of models) mean historical and future change in the total flux of dust (i.e., wetdust + drydust deposition) from the atmosphere, with deposition increasing over the Pacific Ocean under higher SSPs.

End of 21st Century Conditions (2061-2100)

Relative Change: (Future - Historical) + Historical

Historical (1975-2014)

Dynamically representing dust deposition communicates variability due to changing land use and atmospheric conditions to the ocean

Earth System Models (ESMs) simulate processes and interactions across land, atmosphere and ocean systems. The schematic on the right illustrates some of the processes involved in an ESM's representation of dust transport: dust sourced from the land model is advected through the atmosphere, over the ocean, and deposited to the ocean surface. Dissolution of these mineral aerosols releases biologically-available iron, which stimulates phytoplankton growth and subsequent stages of the biological pump in iron limited regions of the ocean such as the eastern equatorial Pacific².

changes in precipitation and atmospheric dust levels

Several ESM contributions to CMIP6^{3,4,5,6} implement dynamic coupling of atmospheric dust deposition. This is in contrast to earlier CMIP ESMs that parameterized iron deposition as a preindustrial or historical climatology⁷, which omits the role of interannual and multidecadal dust variability in ocean biogeochemical (BGC) processes⁸

Dynamic vs. static dust deposition affects projections of Pacific phytoplankton nutrient limitations and related BGC diagnostics

Dynamic dust deposition permits greater variability in tropical Pacific nutrient limitation under different radiative forcing scenarios

ESM-evolution towards more holistic representation of land-air-sea interactions for projecting potential fates of marine ecosystems in a changing climate. Under future scenarios wherein land use, elevated temperature and changes in precipitation substantially alter the transfer of mineral aerosols to the surface ocean, dynamic representation of dust/iron deposition to the ocean is crucial for anticipating basin-scale distribution of primary production and nutrition availability for higher trophic level organisms, including lucrative fisheries.

Additional Methods

CMIP6 model output used for the multi-model mean figure (top left) for historical conditions and relative changes in total atmospheric dust deposition under aSSP1-2.6, ^bSSP2-4.5, ^cSSP3-7.0, ^dSSP5-8.5 are listed below; With the exception of GFDL ESM4, model output was acquired through the World Climate Research Programme database:

EC-Earth3-AerChem ^c	CESM2 ^{a,b,c,d}	GFDL-ESM4 ^{a,b,c,d}	INM-CM5-0 ^{a,b,c,d}	MIROC6 ^{a,b,c,d}	NorESM2-LM ^{a,b,c,d}
CanESM5 ^{a,b,c,d}	CESM2-WACCM ^{a,b,c,d}	INM-CM4-8 ^{a,b,c,d}	IPSL-CM5A2-INCA ^{a,c}	MRI-ESM2-0 ^{a,b,c,d}	

All other figures were generated using output from GFDL ESM4. For the static dust simulations, only projections under SSP5-8.5 were generated

References

¹O'Neill et al. 2016. *Geoscientific Model Development* ²Moore, et al. 2013. *Nature Geoscience* ³Hajima et al. 2019. *Geoscientific Model Development* ⁴Sellar et al. 2019. Journal of Advances in Modeling Earth Systems ⁵Danabasoglu et al. 2020. *Journal of Advances in Modeling Earth Systems*

⁶Dunne et al. 2020. *Journal of Advances in Modeling Earth Systems* ⁷Séférian et al. 2020. *Current Climate Change Reports* ⁸Lim et al. 2022. *Geophysical Research Letters* ⁹Moore et al. 2004. *Global Biogeochemical Cycles* ¹⁰Hamilton et al. 2020. *Global Biogeochemical Cycles*