WHAT ARE THE MARINE **ECOSYSTEM IMPACTS OF** GEOENGINEERING? kroberts3@lsu.edu

Kelsey Roberts¹, Monica Morrison², Julia Blanchard³, Camilla Novaglio³, Daniel Boyce⁴, Ryan Heneghan⁵, Morgan Raven⁶, Michael Diamond⁷, Cheryl Harrison¹

1. Louisiana State University, 2. National Center for Atmospheric Research, 3. University of Tasmania, 4. Bedford Institute of Oceanography , 5. Queensland University of Technology, 6. UC Santa Barbara, 7. Florida State University

HIGHLIGHTS

Research and implementation of geoengineering moving forward faster than oversight

Increased scattering by Stratospheric Aerosols

Thinning high clouds to allow more heat to escape

STRATOSPHERIC

AEROSOL ~16-25 KM

CIRRUS

CLOUDS

~6-13 KM

CLOUDS

~0-3 KM

Increased scattering by brightened clouds

NSF

SUN

- > High degree of uncertainty in how marine systems will respond to geoengineering scenarios
- > We need holistic and crossdisciplinary investigation of impacts

BACKGROUND

<u>Geoengineering</u> = deliberate largescale manipulation of the environment to counteract anthropogenic global warming and maintain temperature targets

Types of geoengineering we're interested in:

• Stratospheric Aerosol Injection (SAI)

CULTIVATION ARTIFICIAL UPWELLING & DOWNWELLING

NUTRIEN

15931

Stratospheric aerosol injection: increasing the number of liquid or solid particles (e.g., sulfate) in stratosphere to reflect sunlight (analogue: volcanic eruptions) Marine cloud brightening increasing the reflectivity of low clouds over certain parts of the ocean (analogue: ship tracks)

- Marine Cloud Brightening (MCB)
- Marine Carbon Dioxide Removal (mCDR)

The potential tradeoffs of geoengineering on marine ecosystems must be explored to determine plausible scenarios or provide 'exit ramps' for discontinuing research & avoiding implementation

CO, STORAGE mCDR; National Academies report 2022

ECOSYSTEM

RECOVERY

ENHANCEMENT

SEAWEED

CO

Seaweed cultivation: producing macrophyte biomass and transporting that carbon into a reservoir such as the deep sea or sediments Alkalinity enhancement: chemical

alteration of seawater chemistry via addition of alkalinity through various mechanisms

ONGOING WORK

- Use output from Community Earth System Model (CESM) simulations of SAI and MCB (ARISE 1.5; SSP2-4.5) to drive global fisheries models (Fish-MIP) and explore impacts to the spatiotemporal fish biomass distribution (Tittensor et al. 2021; Heneghan et al. 2021)
- Evaluate risk to marine ecosystems under SAI and MCB simulations using pre-existing metrics (i.e., thermal habitat loss, time to hazardous exposure, ecosystem disruption) from Boyce et al. 2022 'A climate risk index for marine life'