Poster ID 16214, S12/P3

Integrated Interdisciplinary Platforms for the Future

Alison M. Macdonald, Laura Stolp, Magdalena Andres, Leah McRaven, & Kerry Ström

https://sciencerocs.org/

1. The Challenge

WOODS HOLE

INSTITUTION

OCEANOGRAPHIC

interdisciplinary observations Repeat integrated transecting strong currents, crossing the interface between open ocean and shelf regions, and sampling the broad interiors of ocean basins (e.g., Fig 1) are imperative to understanding how oceans are evolving contributing to our changing climate. Such and observations, however, are difficult and expensive to obtain and maintain. Fig 1a. Map representing a 6-month period in 2020

Science Rocs (Science Research on Commercial Ships) A multi-institution ad-hoc group of scientists, engineers, technicians, ship operations personnel, & data managers partnering with international commercial shippers to transform ocean science

3. The Vision

We envision a future where commercial vessels are, as a matter of course, designed and built with a suite of atmospheric <u>and</u> oceanographic sensors optimized for a vessel's trade route to address societally-relevant questions, with FAIR data (Wilkinson 2016) disseminated broadly amongst stakeholders. Fig. 3: Schematic of

of Wallenius-Wilhelmesen Science tracks. ship RoCS facilitated Tysla pCO2 route in yellow. (SMHI Weather Solutions courtesy of G. image Fagerheim)

NOAA's Voluntary Observing Ship (VOS) program and the GOOS Ship of Opportunity Programme (SOOP) support meteorological weather stations, the global XBT and pCO₂ Networks, and occasionally float and other deployments. Science RoCS seeks to facilitate the connection between science and industry, to organize individual efforts, and to integrate data sets.

Fig 1b. *April* 2023 *marinetraffic.com* snapshot of vessel locations.

The 50,000+ commercial ships (e.g., Fig. 1b) in operation around the world today represent a viable underutilized platform - an opportunity to obtain repeat direct observations of velocity and other parameters in under-observed regions on a scale unapproachable by research vessels.

envisioned Science RoCS flow: from a front- end portal to connect science to vessels & ship owners to science, to integrated data acquisition, to F.A.I.R. data. (Schematic courtesy of R Hudak).

Where <u>science</u> can include process studies, sensor developers & deployers, modelers, forecasters, emergency responders, those without access to research vessels, etc.

Benefits: increased access to interdisciplinary ocean-atmosphere sensors hosted on commercial ships to monitor, investigate, and mitigate the impacts of our changing climate; reduced fuel costs; and enhanced risk management for ships and society through improved weather and climate monitoring & prediction.

4. <u>Science RoCS Today</u>

2. A Little History SCOR Working Group 133 Oleander • XBTs 1977 ADCP 1992 • AXIS 2011 • Update 2023

OceanScope Report, 2011 Fig. 2 Many individual efforts have sought to build climate records using commercial ship platforms. The OceanScope report supported use of ADCPs to measure subsurface currents . The Oleander Project (Rossby et al., 2022) is a prime example of what can be done.

PANAMA

Fig. 4: a) Xaymaca's Vaisala WXT-536 transmitting NRT data; b) M/V Xaymaca; c) CMEMS sea surface temperature (4-day average: April 20-24, 2022) with Xaymaca's NRT in situ air temperature along the ship track superimposed In January of 2021, a Vaisala weather station (Fig. 4a) and 75 KHz ADCP were install on the Pangaea Logistical Systems Ltd. vessel M/V Bulk Xaymaca (Fig 4b) running a roundtrip between Jamaica and New Orleans about every 3 weeks (Fig 4c).

5. M/V Xaymaca Observes Recent Loop Current Eddy Shedding

References

Rossby, T. 2011. OceanScope: A Proposed Partnership Between the Maritime Industries and the Ocean Observing Community to Monitor the Global Ocean Water Column. Report of SCOR/IAPSO Working Group. Paris: SCOR

Rossby, T. Palter, J., & Donohue, K. (2022). What can hydrography between the New England Slope, Bermuda and Africa tell us about the strength of the AMOC over the last 90 years? GRL, 49, https://doi.org/10.1029/2022GL099173 Wilkinson, M., M. Dumontier, I.J.J. Aalbersberg, G. Appleton, M. Axton, A. Baak, etal. **2016.** The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, https://doi.org/10.1038/sdata.2016.18. STONY Shipping Consortium UNIVERSITY BR OF RHODE ISLAND

Ocean Observing System

Sensor & Equipment Manufacturer

Acknowledgments

U

We thank personnel at Pangaea Logistic Solutions and SEAMAR

• Wallenius

Wilhelmsen

for their enthusiasm, assistance & support in making the M/V Bulk Xaymaca our first Science RoCS vessel. Instruments presently installed on the Xaymaca were funded by ONR. Poster effort was partially funded by NSF Grant# OCE-2241601 "The Oleander Project: Highresolution observations of the dynamic ocean between New Jersey and Bermuda", WHOI Access-to-the-Sea Grant #RINFHART/SEA EN, & the WHOI Phys. Oceanogr. Department

PANGAEA