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The ocean plays a significant role as a sink for anthropogenic carbon dioxide (CO2) (Sarmiento & Gruber, 2002). When the CO2

molecule enters the ocean, it hydrates and forms carbonic acid, which is a weak acid that tends to dissociate water producing

hydrogen ions. As a result, the concentration of hydrogen ions ([H+]) in the seawater steadily increases, leading to ocean

acidification and a decrease in the concentration of CO3
2-, which is essential for marine calcifying organisms to form their

skeletons and shells. The decline of carbonate ions severely affects the biogenic calcification process (Doney et al., 2020).

Calcification can be assessed through the estimation of the saturation state of calcium carbonate minerals (Ω). Values of Ω for

calcite (ΩCalcite) and aragonite (ΩAragonite) higher than 1 indicate favourable conditions for calcification to proceed whereas values

of Ω lower than 1 denote corrosive conditions for calcifiers (Doney et al., 2009). Nevertheless, biogenic calcification is also

affected by other factors (Melzner et al., 2020). In fact, Ω=1.5 has been considered to define negative consequences for marine

ecosystems even at a planetary scale (Broadgate et al., 2013; Ekstrom et al., 2015; Gruber et al., 2012; Zhai, 2018) and it has been

adopted as a critical value that allows a proper calcification by marine organisms.

In this study, we used periodic high-

quality measurements collected in

the Strait of Gibraltar (SoG) during 17

years of measurements (2005-2021)

to accurately determine the temporal

evolution of Ω in the main three

water masses that exchange in the

Strait of Gibraltar: North Atlantic

Central Water (NACW), Levantine

Intermediate Water (LIW) and

Western Mediterranean Deep Water

(WMDW). Measurements were taken

in the three stations that form the

marine time series GIFT (Gibraltar

Fixed time series), which are

distributed along the longitudinal

axis of the SoG (G1, G2 and G3).
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ΩCalcite decreased at rates

of -0.0215 ±0.0034 yr-1

in the NACW, -0.0161

±0.0029 yr-1 in the

WMDW, and -0.0129

±0.0021 yr-1 in the LIW

In nearly 51 years from now, the NACW crossing the SoG will already present critical conditions for biogenic

calcification. In the WMDW, calcifiers synthesizing aragonite will be threatened by reduced levels of carbonate

in approximately 56 years. Furthermore, even though acidification in the LIW is lowers with respect to the other

two water masses, an unfavourable scenario for calcification is expected to occur in 73 years. Due to the lower

solubility of calcite in seawater compared to aragonite, unfavourable conditions with respect to this mineral will

arise later. Therefore, if CO2 emissions continue to progress according to the IPCC SSP5-8.5 scenario, over the

next century the water masses exchanging in the SoG will not support the chemical environment required for

survival of marine calcifiers.
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The annual archetypal

concentration of a

parameter N (ΩAragonite

or ΩCalcite) in a water

mass i (NACW, LIW or

WMDW) was obtained

through the equation

𝑁𝑖 =
σ𝑗 𝑥𝑖𝑗𝑁𝑗

σ𝑗 𝑥𝑖𝑗

Temporal trends for each carbon

parameter from 2005 to 2021 were

determined by linear regression from

the plots representing annual archetypal

concentrations vs time

A linear extrapolation of

the relationship between

ln(Ω) vs ln([CO2]atm) for

both minerals was

applied to assess future

changes in ΩCalcite and

ΩAragonite. Based on the

IPCC SSP5-8.5 emission

scenario and the annual

increase of atmospheric

CO2, we determine the

year in which Ω will

exhibit critical values for

calcification in water

masses of the SoG.

Significance levels were set

at p<0.001 or p<0.05
Water masses were

discriminated by their

specific thermohaline

properties in the SoG

• Measured in the laboratory: Total

alkalinity; pH; Phosphate; Silicate

• Calculated with CO2SYS: ΩAragonite and

ΩCalcite
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ΩAragonite decreased at

rates of -0.0139 ±0.0024

yr-1 in the NACW, -0.0102

±0.0019 yr-1 in t he

WMDW, and -0.0080

±0.0013 yr-1 in the LIW

ΩAragonite<1 will occur

after 2100 in the three

water masses.

ΩAragonite  1.5 in the

NACW, WMDW, and LIW

will arise in 2074, 2079,
and 2096, respectively.

The undersaturation

and the critical point

in ΩCalcite are expected

after 2100 in the three
water masses.


