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The process of dynamical downscaling entails the use of high-resolution regional models driven by lower
resolution global reanalyses and projections. Such regional models, given their higher spatial resolution
and sometimes higher biogeochemical detail relative to the global models which drive them, are
typically computationally expensive. This expense limits the ultimate size of any downscaled regional
ensemble (including parameter sensitivities), which in turn constrains the skill and uncertainty estimates
of regional forecasts needed for their effective use in fisheries management. Statistical downscaling
based on presently observed correlations between large-scale forcing and small-scale response is an
alternate approach, but lacks the ability to capture future emergent behaviors of complex, nonlinear
regional biogeochemical systems. Here we describe several alternative techniques for the statistical
expansion of dynamically downscaled ensembles. These "hybrid" methods offer a compromise between
the spatial, temporal and trophic detail of dynamical methods vs. the numerical efficiency of purely
statistical methods. We illustrate several methods, including the use of Machine Learning, with
examples from ongoing Management Strategy Evaluation research in the Bering Sea and the Gulf of
Alaska.

More details HERE!

CMIP6 monthly analysis 

The statistical-dynamical hybrid method (“stat”) captures most of the full dynamical downscaling signal 
(“original”) on the Bering Sea shelf: here compare change in 30-year averages (2015-2044 -> 2070-2099) 
under ssp585 scenario forcing from three GCMs (GFDL, CESM, MIROC)
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TWO RELATED GOALS OF THESE METHODS:

1) SUMMARIZE EMERGENT BEHAVIORS of the
regional model – what elements rise/fall together in
conjunction with the forcing, and what are the
spatial patterns?

2) APPROXIMATE RESULTS OF DYNAMICAL
DOWNSCALING - apply a big ensemble of climate
projections or seasonal forecasts to the simplified
model; get better estimates of means and uncertainty
for use in fisheries management
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https://commons.wikimedia.org/w/index.php?curid=109362147

Method 2: Multivariate Linear Regression (LM) and Computational Neural Network (Long-Short Term
Memory network; LSTM) are trained to relate the dominant PCs (time series) of the forcing variables to
the dominant PC of the response variable. As in method 1, the trained model could be used to predict
the full nonlinear model response to a large ensemble of projected forcing.

Forcing and response variables used in the multivariate analysis:
GCM atmosphere, GCM ocean, regional ocean response

 

Table 2. Properties used in the multivariate analysis. Variables in black are from the regional 

model, those in red are boundary conditions from the global models, and those in blue are 

surface forcing from the global model. 

 

Jel_integrated  Jellyfish concentration, integrated over depth   mg C m-2 

NCaS_surface5m On-shelf large copepod concentration, surface 5m mean  mg C m-3 

NCaO_surface5m Offshore large copepod concentration, surface 5m mean  mg C m-3 

EupS_integrated On-shelf euphausiid concentration, integrated over depth  mg C m-2 

EupO_integrated Offshore euphausiid concentration, integrated over depth  mg C m-2 

Cop_surface5m  Small copepod concentration, surface 5m mean   mg C m-3 

MZL_surface5m Microzooplankton concentration, surface 5m mean  mg C m-3 

PhL_surface5m  Large phytoplankton concentration, surface 5m mean  mg C m-3 

PhS_surface5m  Small phytoplankton concentration, surface 5m mean  mg C m-3 

Iron_bottom5m  iron concentration, bottom 5m mean    micromol Fe m-3 

Iron_surface5m  iron concentration, surface 5m mean    micromol Fe m-3 

NH4_bottom5m  Ammonium concentration, bottom 5m mean   mmol N m-3 

NH4_surface5m  Ammonium concentration, surface 5m mean   mmol N m-3 

NO3_bottom5m  Nitrate concentration, bottom 5m mean    mmol N m-3 

NO3_surface5m  Nitrate concentration, surface 5m mean    mmol N m-3 

v_1   Along-shelf velocity, bottom layer     m s-1 

u_1   Cross-shelf velocity, bottom layer     m s-1 

v_30   Along-shelf velocity, top layer     m s-1 

u_30   Cross-shelf velocity, top layer     m s-1 

hice_30   average ice thickness in cell     m 

aice_30   fraction of cell covered by ice     (no units) 

salt_surface5m  salinity, surface 5m mean     psu 

temp_bottom5m  potential temperature, bottom 5m mean    Celsius 

temp_surface5m  potential temperature, surface 5m mean    Celsius 

v_south   Along-shelf velocity at southeastern boundary, top layer  m s-1 

u_south   Cross-shelf velocity at southeastern boundary, top layer  m s-1 

temp_south  potential temperature at southeastern boundary, top layer  Celsius 

salt_south  Salinity at southeastern boundary, top layer   psu 

no3_south  Nitrate at southeastern boundary, top layer   mmol N m-3 

nh4_south  Ammonium at southeastern boundary, top layer   mmol N m-3 

iron_south  iron at southeastern boundary, top layer    micromol Fe m-3 

v_west   Along-shelf velocity at southwestern boundary, top layer  m s-1 

u_west   Cross-shelf velocity at southwestern boundary, top layer  m s-1 

temp_west  potential temperature at southwestern boundary, top layer  Celsius 

salt_west  Salinity at southwestern boundary, top layer   psu 

no3_west  Nitrate at southwestern boundary, top layer   mmol N m-3 

nh4_west  Ammonium at southwestern boundary, top layer   mmol N m-3 

iron_west  iron at southwestern boundary, top layer    micromol Fe m-3 

Vwind_frc  Northward wind from global model    m s-1 

Uwind_frc  Eastward wind from global model    m s-1 

Tair_frc  Air temperature from global model    Celsius 

swrad_frc  Shortwave radiation from global model    Watts m-2 

rain_frc   Rainfall from global model     m s-2 

Qair_frc  Absolute humidity from global model    g g-1 

Pair_frc   Surface air pressure from global model    Pa 

lwrad_down_frc  Downwelling longwave radiation from global model  Watts m-2 
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As in method 1, our first step is dimensional
reduction. For selected variables, we calculate
univariate EOFs and PCs from monthly
anomalies. We then seek to relate the forcing
PCs (predictors) to the response PCs
(predictand)

Forcing variables used as predictors:
Air Temperature (Tair_frc)
Zonal wind (Uwind_frc)
Meridional wind (Vwind_frc)
Southeastern boundary SST (temp_south)
Southwestern boundary SST (temp_west)

Response variable to be predicted:
Shelf bottom temperature (temp_bottom5m)

LM model: 
Temp_bottom5m = c1*Tair_frc + c2*Uwind_frc + 
c3*Vwind_frc + c4*temp_west + c5*temp_south + c6

DISCUSSION
Many potential methods for climate downscaling. In
addition to spatially localized skill, we seek to
minimize artifacts which violate mass conservation
(e.g. discontinuities in space or across trophic levels).

Method 1 could be considered an extension of Linear
Inverse Modeling. In typical usage, a LIM uses lagged
correlations to predict future states based on the
present state plus unknowable future noise. Here we
are predicting regional results based on present,
past, and future (within one year) states of global
forcing.

Method 2-LM, seeks out simple linear relationships
between present forcing and present response. In
method 2-LSTM, as in LIM, we allow for past forcing
and response to influence the present state.

NEXT STEPS: attempt LSTM using full dynamically
downscaled output, rather than the dimensionally
reduced (EOF) version.

ACLIM program overview of Bering Sea regional model (“ROMSNPZ”), 
with dynamically downscaled climate projections used for fisheries 
management

Elements of the NPZ model (from Kearney et al. 2020)

Dominant multivariate factor illustrates how strongly different 
variables are connected to each other, and across different months 
of the year. Deep colors indicate a strong contribution to the factor. 
Dotted line highlights a trophically arrayed shift in phenology

Projection of the forcing from 28 additional GCMs yields estimates of regional 
change in bottom temperatures and euphausiids over the 21st century under 
two different emission scenarios. Spatial patterns show ensemble average of 
projected change in 30-year averages between 2015-2044 and 2070-2099, under 
ssp126 (left) and ssp585 (right). Time series show evolution of individual 
realizations (thin lines) and evolution of the mean (thick lines).

Fraction of variance in bottom temperature explained by various 
forcing terms in LM model, trained using three different subsets 
of the dynamically downscaled output 

Comparison of r-values (goodness of fit to response variable) 
for LM-trained (blue) vs. LSTM- trained (red) models. In each 
case, LSTM outperforms LM in fitting the response data

Method 1: use spatial EOFs of forcing and response variables to derive multivariate structure at the pattern

level; use these to approximate the full dynamical response to other GCMs or emission scenarios

Steps in method 1:

1) From dynamically downscaled GCM output, calculate spatial EOFs of monthly anomalies for each biophysical

variable and each month of the year.

This yields:

a) A set of spatial patterns (the EOFs in the original units of that variable) for that month

b) A set of time series modulating those spatial patterns (the PCs, which have unit variance)

2) Perform a second PC analysis on those time series (2b) to seek multivariate “factors” (i.e. temporally

correlated multivariate spatial patterns) relating the forcing to the biophysical response.

3) Project atmospheric/oceanic forcing from other GCMs onto the derived multivariate spatial patterns. This

yields a much larger ensemble of estimates for each regional biophysical variable.

CMIP5 yearly analysis 

Overview of the LSTM method, which optimizes the use 
of present and past states of the system (both forcing 
and response) to best predict the evolving response 
variable(s) 

Time series comparison of predictions from trained models 
(red) vs independent dynamical model output (blue). In this 
example, models were trained on downscaled CESM and 
MIROC ssp585 results and tested using GFDL ssp585 results. 
Upper panel shows performance of LM model; lower panel 
shows superior performance of LSTM model (higher r, lower 
RMSE)

LM performance

LSTM performance


