A brief overview of modeling to
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management of marine socio-
ecological systems
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To truly manage MEs and all MOUs we need to adopt EBM & cover
the full range of SES’

A key facet of implementing EBM operationally is to use models, and
best practices to overcome barriers to their operational use are
available and can help avoid modeling “black holes”

Only when we present the economics and related human dimensions
do people truly care about and pay attention to our work




OUTLINE
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Models for Marine Ecosystems
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Operationalization, Black Holes &
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CAN WE ALL AGREE???
CAN WE PLEASE JUST MOVE ON???




Assumption #1: Everyone here is past the need to justify, define,
rationalize, and explain Ecosystem-Based Management.

Assumption #2: ditto for Socio-Ecological Systems*.

*Refulio-Coronado et al. 2021
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What is EBM, practically?

How to catch fish, preserve habitat, conserve other
critters, denive energy, facilitate shipping, limit
environmental nsks, extract resources, avoid too
much bad stuff, have lots of tourists, utilize the
ocean, respect local tribes & communities,
minimize poliutants, ensure food security, consider
natlonal securlty, and keep people happy all at once
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Assumption #3: Everyone here understands the value, rationale,

benefits and reasoning of using models for EBM applications, esp.
SES'.

Assumption #4: Everyone here recognizes that there are many,
good, extant modeling tools that are available to use to make EBM
operational.
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Ecological submodel Hydrographic submodel

Land-based sources Ocean chemistry
of pollution and habitat and
destruction temperature changes
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There are lots of models for MEs
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Model Taxonomy & Dimensions
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_ _ “---our truth is the intersection
Model Dimensions of independent lies.”
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FIGURE 1
A flowchart summarizing the classification of the various models listed in Table 1.
The flowchart has been modified and updated from that presented in Hollowed et al.
(2000). Boxes with models covered in this report are highlighted
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Ecosystem modelling approach

Loop analysis -
Fuzzy cognitive map
Bayesian belief network
Graph-theoretic network analysis
Structural equation model
Multi-species population
dynamic model
-
Mass-balance models
Agent-based/
individual-based model
Models of intermediate
complexity (MICE)
Ensemble ecosystem model*
End-to-end ecosystem model

Geary et al. 2020 Nat. Ecol. Evo.; also c.f. Schluter et al. 2019 Ecology and Society
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Portfolio approach

Compared landed value- risk & revenue-
to portfolio frontier

EBFM/MS approach resulted in better
outcomes
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Uses commonly available data, examined
from an economic perspective

Potential metric of socio-econ
performance

Discussed at various management
councl IS ’ Risk (100 Million $)
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Townsend et al., in review | Brewster et al. in review



Qualitative modeling

Loop analysis used to engage
multiple stakeholders

Explored sustainability and
attitudes towards shellfish
aquaculture

Results converged across 6
regions

Led to suggestions of best
options for sustainability
(namely lower rearing density)

Gourguet et al. 2021



Coastal Water
movement <
Crown-of- Reef- o
thorns starfish
aised coral reef) —
grove

N
Seagrass
building o
Corals //

S

Habitat for
endangered
species (manta,
sea turtle, etc.)

Spawning
ground

Daily/traditional uses
by the local people

Land-based
activities indirectly
relating to marine
areas via water
discharges
(Agriculture, etc.)

Z7/
=/
\ L

Habitat for
fish species

Place for

Feeding living

Energy/resource
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“Mapped” major features of a
Coastal Lagoon in Japan via a
qgualitative network

Explored policy interventions
and overlap

Demonstrated high degree of
overlap across sectoral uses and
policies

Confirmed integration/
coordination across sectors
would be beneficial

Makino et al. 2021, in Saito et al. eds.



A Socio-ecological System Holon
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There are other examples from
around the globe, but the rate of
these developing is not increasing
as would be expected

Few are fully coupled and fewer still
are dynamically coupled

Many are using qualitative or
scenario-based modeling
approaches

Use in mgt and decision-making
contexts is either growing or at least
planned for

In summation- the degree of
presenting and evaluating tradeoffs
among/across scenarios remains
the chief rationale & benefit



* Yay, | finished building a model
|t actually used data (tuned/calibrated/validated/etc.)
« It produces reasonable results

from EwE Symp. 2019



* Yay, | finished building a model
|t actually used data (tuned/calibrated/validated/etc.)
« It produces reasonable results

It has been [rigorously] reviewed
« Itis being discussed as a possible tool to inform an issue
« Itis being considered in some mgt/policy decision proces
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* Yay, | finished building a model
|t actually used data (tuned/calibrated/validated/etc.)
It produces reasonable results

It has been [rigorously] reviewed
« Itis being discussed as a possible tool to inform an issue
« Itis being considered in some mgt/policy decision process

 Itis providing broader context
It is informing decisions indirectly
 Itis informing decisions kinda directly

« Decisions are now based (at least in part) on my model

« Decisions are improved/better from having used my model
« Status of the resource modeled is ultimately improved

from EwE Symp. 2019



In the context of EBM of marine resources and
Ecosystem Goods and Services...

Routinely and regularly provided (i.e., not
research

Using an already vetted and verified
method/approach/model {i.e., not research)

Incorporating latest data updates (which along
w/synthesis outputs are reviewed)

Used to inform, support or assist decisions (i.e.,
applied, not theoretical)

Typically tactical (short term, specific actions)
and focused on actionable choices/outcomes/
impacts

Can also be strategic, heuristic or contextual,
namely to bound tradeoff solution space




OPERATIONAL- M S
ESULTANT PREDICTION
“USED TO SUPPORT AN
RESOURCE MANAGEME
CHARACTERIZED BY:

(1) use of established methodological approaches
and best practices during model development,

ODELS A
CT S

(2) regular use of the model to provide information
in support of a resource management process,

(3) use of the most recently available data that has
been quality-controlled, archived, and is easily
accessible,

(4) model outputs that can inform actionable
choices from a defined set of alternatives, and

(5) ideally, evaluation of trade-offs among
ecological, socio-economic, and policy objectives.

Craig and Link 2023 Fish & Fish.

Build an E tem Model

an Ecosystem Mode|
Apply Best Practices \

Uses Most Recent Data

Operational models are also regularly updated using
established procedures and their outputs are familiar
to decision-makers”.

The point is that there are many research models and
even published predictions, ...

but for a model to formally provide operational
prediction products, as used in a forecasting context,
the prediction products need to be routinely and
regularly incorporated in a decision-making venue.
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Mischaracterizing or excessive emphasis
on 1-2 types of uncertainty -

Excessive & Infeasible Statistical Rigor -

Wrong class/type of model use -

Wringing of hands wrt “too little data, too
little precision, too much uncertainty” -

Not using models for SES

c.f. Link et al. 2012, PiO; Rousnsevell et al. 2021 One Earth



Balancing model dimensions
Using Best practices

Knowing right type of model for the
issue/question

Using right type of model for the
issue/question

Recognizing multiple pathways and
insertion points in an operational context

Focusing on accuracy, outcomes and
participation seems wise for SES contexts




TECHNICAL PROCEDURAL

Interdisciplinary teams Engaging with stakeholders and mgt
Using best practices for each institutions early and often
discipline (beyond just modeling) Insertion into the mgt or decision-
Rigorous peer review making process
Provide multiple forms of output Develop/apply model to objectives
before finalizing at-hand
Report on tradeoffs @
MODELING

Following Int’l Stds or best practices Multiple model ensembles

for the component models Iterate on model coupling

Explicitly addressing the multiple Use APPROPRIATE level of model,

types of uncertainty resolution, dimensions, data, etc.



NON-TECHNICAL TECHNICAL

A lack of familiarity of modeling options Data gaps and resource limitations,

A lack of stakeholder engagement Modelling issues (complexity,

parameterization, validation, technical
“We’ve never done it that way before” review)

other institutional inertia factors

Unclear management objectives

Stating tradeoffs explicitly gives away Interdisciplinary jargon challenges

political positioning
Social/institutional/governance @
constraints (e.g. discomfort

with/inability to handle tradeoffs, what

are the value metrics for decision
criteria?, etc.). C.f. Townsend et al. 2019, FMS | Fulton 2021, Fish & Fish.

. . Craig and Link 2023 Fish & Fish. | Karp et al. 2023, ICES JMS
Different stds across disciplines Haugen et al. 2024, Nature Ocean Sust. | Patrick & Link 2015



Some Global Best Practices

Plus, Especially for SES Modeling:

* Maintain model taxonomy?

* Coupling across disciplines
* Best metrics for demonstrating tradeoffs

* Wide participation is increasingly key

* Understand and work towards operational usegf,\(@x,’)&\ B
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To truly manage MEs and all MOUs we need to adopt EBM & cover
the full range of SES’

A key facet of implementing EBM operationally is to use models, and
best practices to overcome barriers to their operational use are
available and can help avoid modeling “black holes”

Only when we present the economics and related human dimensions
do people truly care about and pay attention to our work

Email me at:
Geret.DePiper@noaa.gov
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