

Size-based changes in the trophic ecology of *Aurelia labiata*

Jessica Schaub¹, Anna K McLaskey¹, Ian Forster² & Brian PV Hunt¹
Zooplankton Production Symposium - 19 March 2024
¹University of British Columbia, Vancouver ²Fisheries and Oceans Canada

ACKNOWLEDGMENTS

Support: Lauren Portner (Pelagic Ecosystems Lab, UBC), Hakai Institute Staff, Miki Shimomura & Qi Liu (Pacific Science Enterprise Center, DFO)

Fisheries and Oceans Pêches et Océans Canada

Canada

BIOMARKERS IN ECOLOGY

Two popular options:

Can be used for:

• Stable isotopes (C & N)

Tracing prey sources

• Fatty acids

Nutritional composition

Advantages: time-integrated & multiple applications

TRACING PREY SOURCES WITH CORRECTION FACTORS

TEF = trophic enrichment factor (SI) CC = calibration coefficient (FA)

Need to be calibrated for the predator of interest (moon jellyfish) Schaub et al. 2021, JEMBE

NUTRITIONAL COMPOSITION

STABLE ISOTOPES

C:N, where N is usually limiting for animals

FATTY ACIDS

'Healthy fats', like omega-3 and omega-6

Essential fatty acids: ARA, EPA, DHA

LARGE JELLYFISH EAT LARGER PREY, LEADS TO HIGHER TROPHIC LEVEL

OBJECTIVES

Investigate size-based changes in jellyfish trophic level and nutritional composition

Do these patterns relate to patterns in their diet?

SAMPLING DATES AND LOCATION

Heriot Bay, BC, Canada

July (Summer) September (Fall)

Aurelia labiata

SAMPLE SIZE DISTRIBUTION OVERLAPPED BETWEEN MONTHS

INCREASE IN TL WITH SIZE, REGARDLESS OF SEASON

 $\Delta \delta^{13}C = 1.43\%0$ 1 trophic level

 $\Delta \delta^{15}$ N = 2.05‰ 1 trophic level

- July
- ▲ September

MEASURED FOOD WEB STRUCTURE

MOON JELLYFISH

NET PLANKTON Higher trophic level FA markers for copepods

POM
Lower trophic level
FA markers for bacteria, detritus,
phytoplankton, microzooplankton

AURELIA DIET SHOWS TL SIZE STRUCTURE FOR BOTH SEASONS

PATTERNS IN ESSENTIAL FATTY ACIDS CHANGE WITH SIZE

SUMMARY OF RESULTS

- Shift from small to large prey as jellyfish grow
 - 1 trophic level difference between 25 mm and 225 mm individuals
- Aurelia size was the major driver, as patterns were conserved between seasons
- Diet likely plays a role in jellyfish nutritional composition, but there are also other factors at play

THANK YOU!

j.schaub@oceans.ubc.ca

OPEN ACCESS PAPER →

