

DEVELOPING A HIGH-THROUGHPUT GENETIC METHOD TO ELUCIDATE THE DIVERSITY AND ABUNDANCE OF ZOOPLANKTON FROM SOUTHERN-OCEAN CONTINUOUS PLANKTON RECORDER (CPR) COLLECTIONS

Georgia Pollard¹, Matt Pinkerton², Mary Sewell³, Moira Décima⁴, Charles Lee¹, Craig Cary¹

¹University of Waikato, Hamilton, New Zealand, ²National Institute of Water and Atmospheric Research, Wellington, New Zealand, ³University of Auckland, Auckland, New Zealand, ⁴University of California, San Diego, La Jolla, United States

ZOOPLANKTON IN THE SOUTHERN OCEAN

- Zooplankton are important to Southern Ocean ecosystems and carbon flux
- · Climate Change Predictions:

Increased temperature

Acidification

Shifts in sea ice coverage

Increased upwelling

Marine Protected Area
 Climate change vs fishing pressure

Credit: BBC

CURRENT METHODOLOGIES

Sample Collection

502/24034

Credit: Mary Sewell

Credit: NOAA

Credit: NOAA

CURRENT METHODOLOGIES - COMPARISON

Method	Advantages	Disadvantages	Best Uses
Morphological Identification	 Information about individuals Life stage Species abundance 	 Large proportion unidentifiable Specialized knowledge required Expensive Small sample sizes 	Species abundanceDevelopmental stages
Metabarcoding	 Identification irrespective of appearance Low cost High throughput 	 No information about individuals Not reliable for abundance Biases can be introduced throughout process Databases Prior identification Misidentification Unknown unknowns 	• Species presence/absence

GOALS

- Current research limitations
 - Methods of analysis
 - Resource intensive
 - Introduce biases
 - Sample processing backlog
- · A new methodology is needed
 - Accurate
 - High throughput
 - Universal

Number of CPR samples by area

Pinkerton et al, 2020

METHOD DEVELOPMENT OVERVIEW

Universal Procedure Across Zooplankton Taxa

SAMPLE COLLECTION / IDENTIFICATION

SPECIMEN PROCESSING

SEQUENCE ANALYSIS

Check sequence quality and BLAST search sequences to confirm ID

Finalize reference sequences

Trimming

Generate sequence alignments

Southern Ocean sequence database

Barcodes and sample data

03 RESULTS

RESULTS OVERVIEW

Amplicon	COI	18S Operon
# Taxa Sequenced	38	48

Phyla	COI Sequenced?	18S Operon Sequenced?
Annelida	Inconclusive	Yes
Arthropoda	Yes	Yes
Brachiopoda	No	No
Bryozoa	Yes	Yes
Chaetognatha	Yes	Yes
Chordata	Yes	Yes
Cnidaria	Inconclusive	Yes
Echinodermata	No	Yes
Foraminifera	Inconclusive	Yes
Hemichordata	No	No
Mollusca	Yes	Yes
Porifera	No	No
Radiozoa	No	Yes

05-Apr-24

SEQUENCE ALIGNMENT - 18S OPERON

Alignment from 38 sequences, representing 32 taxa

SEQUENCE ALIGNMENT - 18S OPERON

SEQUENCE ALIGNMENT - 18S OPERON

PRIMER DESIGN - 18S OPERON

RESTRICTION ENZYME TESTING

GOALS

 Find 1 or more restriction enzymes that would differentially digest amplicons from different species to produce unique fingerprints

PROBLEMS

- Co-amplification
- Unknown sequences

Decision: proceed with sequencing method

04 FUTURE WORK

FUTURE WORK

- 1. Final determination of which primer set to use for this method
 - 1. COI or 18S operon
 - 2. Considerations:
 - 1. Amplification success across phyla
 - 2. Taxonomic resolution
- 2. Validation of the method versus morphological ID and metabarcoding
- 3. High-throughput processing of historical and recent ethanol samples

IN MEMORIAM: PROF. CRAIG CARY

May 13, 1954-Feb 29, 2024

An exceptional scientist and mentor without whom this project would not have been possible.

THANK YOU

Special thanks to Karen Robinson and Dr. Svenja Halfter for providing samples

05-Apr-24 22