Krill swarms offer variable energy density to predators in the Northern California Current system

19 March 2024

Rachel Kaplan, Kim Bernard, Jennifer Fisher, Elizabeth Daly, Abby Tomita, Amanda Kent, Solène Derville, Leigh Torres

Northern California Current region

- Eastern Boundary Current Upwelling System
 - o seasonal wind-driven upwelling/downwelling
 - March November upwelling season
- Productive food web
 - Diatoms → grazers → mesozooplankton → upper trophic levels
- Key species

Northern California Current region

- Eastern Boundary Current Upwelling System
 - seasonal wind-driven upwelling/downwelling
 - March November upwelling season
- Productive food web
 - Diatoms → grazers → mesozooplankton → upper trophic levels
- Key species
 - o Krill
 - Euphausia pacifica
 - Thysanoessa spinifera

NCC as foraging grounds

- Krill predators
 - Fish
 - Seabirds
 - Pinnipeds
 - Cetaceans
- Baleen whales
 - Humpback
 - Blue
 - Fin
 - all are threatened, and protected under federal United States legislation

NCC as foraging grounds

- Baleen whales
 - Migratory lifestyle
 - Capital breeders
 - Prey quality is important!
- Peak occupancy
 - Humpback August
 - Blue September
 - Fin December

Research questions

- 1) How are krill distributed at scales relevant to baleen whale predators?
 - Latitudinal and cross-shelf distribution patterns
 - Characteristics of krill aggregation structures

- 2) How does the energetic value of krill vary in relation to seasonal upwelling?
 - Early season (pre-spring transition)
 - Late season (after upwelling and productivity accumulation)

Methods - Paired data streams

Active acoustics

- dB differencing (120–38 kHz; 2018– 2022)
 - swarm characteristics (2022)
 - Hierarchical Cluster Analysis

Bongo net tows

- krill counts and tow proportions (2018–2022)
 - bomb calorimetry samples (2022)
 - Generalized Additive Models

Results - NCC krill distributions

Adapted from Checkley and Barth 2009

Results - contrasting cross-shelf distributions

Opposing trends

- Thysanoessa spinifera
 - Coastal distribution
 - Peak occupancy on the shelf
- · Euphausia pacifica
 - Shelf, slope, oceanic distribution
 - Peak occupancy offshore of the shelf break

Distance from the shelf break

Results – Fine-scale aggregation structures

Swarm characteristics

- Length
- Height
- Density
- Spatial variability

Results - Seasonal caloric signal

Main take-aways

- 1) How are krill distributed at scales relevant to baleen whale predators?
 - T. spinifera dominates shelf, E. pacifica dominates slope and offshore waters
 - NCC-wide distribution (with intra- and interannual variability)
- 2) How does the caloric value of krill vary seasonally in relation to upwelling?
 - Early season lower caloric content, similar value between species
 - Late season E. pacifica slightly elevated, T. spinifera skyrocketed
- 3) What are the characteristics of individual krill aggregation structures?
 - Variable swarm height, length, density, etc.
 - Are large, accessible swarms (Cluster 2) preferential prey for whales?

Next steps

- 1) Integrate caloric values with acoustic data
- 2) Bring in the whales examine preyfield around humpback whale groups
- 3) Broaden swarm structure analysis and compare with different whale species (blue, humpback, fin whales)
- 4) Ultimately, results will inform models for use in management

Acknowledgements

Data

NCC Ecosystem Surveys (National Oceanic and Atmospheric Association)

Funding

National Science Foundation Graduate Research Fellowship Program

Oregon Department of Fish and Wildlife

Thank you!

