Pattern-oriented advances in an individual-based model for the North Pacific krill, *Euphausia pacifica*: improving realism and framing questions for future improvements

Roxanne Robertson¹ and Eric Bjorkstedt²

¹Cooperative Institute for Marine, Earth, and Atmospheric Systems, Cal Poly Humboldt, Arcata, CA, USA

²Southwest Fisheries Science Center, NOAA, Trinidad, CA, USA

ICES-PICES International Zooplankton Production Symposium

18 March 2024

2013 ♀

2014 ♀

Thanks to funding sources! NOAA's SWFSC via CIMEAS Malcolm Oliphant Scholarship

Motivation for IBM

Goal: Develop IBM to better capture growth and size variability based on observations off northern California

Life Cycle & Model Structure

- 15 life history stages
- Currency = carbon

- Realistic DVM
- Food ≈ [Chlorophyll a]

Driven by environment off northern CA

Aligning Model with Observations

Model development has two phases:

Phase I: Make submodels more realistic based on existing literature

Phase II: Tune to seasonal dynamics

- Pattern oriented modeling (Grimm et al., 2005)
- Phenomenological submodels (hypotheses)

Phase I: Making submodels more realistic

1. Ingestion

Food concentration (μg C I⁻¹)

Ingestion function accounts for food density, body weight, and temperature

2. Growth (via Q₁₀ ingestion)

Growth matches previous IBMs up to ~12°C, then juvenile & adult dynamics are consistent with Marinovic and Mangel (1999).

3. Metabolism

As percent of assimilated carbon: 62-81% (Consistent with Lasker, 1966)

Phase I: Making submodels more realistic

4. Molting

$$D_{juv.} = a_{juv.}(T+B)^{c}$$

Phase I: Results & Diagnosis

Base Model (Based on Dorman et al., 2015)

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Predictions <u>not</u> in phase with observations

Phase I

Predictions in phase with observations!

Phase I: Results & Diagnosis

Base Model (Based on Dorman et al., 2015)

Predictions <u>not</u> in phase with observations

Phase I

Predictions in phase with observations!

Discrepancies remain...

...at this point, no experimental data to inform physiology...

Phase II: Phenomenological Tuning

A: Scaling function (DOY) to address discrepancy in furcilia size
H: energetics are seasonally variable (e.g., food quality, quiescence)

B: Scaling function (temperature) to address discrepancy in adult size H: enhanced assimilation during upwelling (temperature as proxy for productive upwelling season)

Phase II: Phenomenological Tuning

A: Scaling function (DOY) to address discrepancy in furcilia size
H: energetics are seasonally variable (e.g., food quality, quiescence)

B: Scaling function (temperature) to address discrepancy in adult size
H: enhanced assimilation during upwelling
(temperature as proxy for productive upwelling season)

Phase II: Phenomenological Tuning

A: Scaling function (DOY) to address discrepancy in furcilia size
H: energetics are seasonally variable (e.g., food quality, quiescence)

B: Scaling function (temperature) to address discrepancy in adult size
H: enhanced assimilation during upwelling
(temperature as proxy for productive upwelling season)

Phase II: Results

Marine heatwave + HAB

Discrepancies coincide with major warming event & HAB

- Effects of unprecedented harmful algal bloom (McCabe et al., 2016)
 - Domoic acid suppresses ingestion (Bargu et al., 2006)
- Effects of MHW on quality of food (Kim et al., 2024)

Summary & Conclusions

- Improved realism by incorporating empirical observations
- POM yielded further improvements
- Model outputs compare favorably to other krill data sets

Strengthens foundation for IBM to serve as tool for broader examination of ecosystem dynamics

E. pacifica length (May – Sep.)

"A model, once it is running reliably... is like a laboratory waiting to be used." - A. Starfield, K. Smith, and A. Bleloch