
Tyler Rohr

ARC DECRA Fellow

IMAS – Lecturer in SO Biogeochemical Modelling

Beyond closure: 

Towards a world where 

grazing is constrained in 

biogeochemical models 
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Steinberg & Landry, An. Review of Marine Science (2017)

Zooplankton and the Marine Carbon Cycle
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Overview

Sources of Uncertainty in 
CMIP6 Marine Carbon Cycle
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1.    Prescribed Properties

2.     Emergent Properties

3.    Emergent Relationships

Compare parameters and equations 
to empirical observations

e.g. K1/2, gmax, PGI

Compare emergent properties of 
model output to observed properties 

e.g. Zooplankton Biomass, 
      Grazing Pressure

Compare emergent relationships in
model to observed relationships 

e.g Community-integrated 
     functional response

Th
re

e 
Ti

er
s 

o
f 

C
o

n
st

ra
in

ts

1. 2.



4

Appendix 1 – Models

Earth System Models 
- Slice the Earth up into heaps of little boxes 
- Solve some of differential equations 
- Transform and move mass/energy around

Marine Biogeochemical (BGC) Models
- The bit that determines how ‘stuff’ in the ocean 

biologically and chemically transforms. 
- Which then gets tossed about by physics
- And allow for 2-way climate-biogeochemical 

feedbacks
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Appendix 2 – Grazing Rate Semantics 

Bulk phytoplankton loss rate to grazing (G)
- Rate all phytoplankton are killed by zooplankton 
- ~Gross Secondary Production w/o the sloppy feeding

Zooplankton (specific) grazing rate (g)
- Rate ‘individual’ zooplankton graze phytoplankton
- Phytoplankton grazed per unti zooplankton per time

Grazing Pressure (GP) 
- The phytoplankton specific loss rate to grazing
- Phytoplankton grazed per unit phytoplankton per time
- Increases with zooplankton biomass and their specific grazing 

rate

G=gZ
(biomass/time)

g = G/ 

GP = G/ 

ZP

(1/time)

(1/time)
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Appendix 3 – The Functional Response Curve

𝐾
1

/2

𝑔𝑚𝑎𝑥

Food-replete, 
metabolism/digestion 
limited grazing rate

Food-scarce, 
Prey-limited grazing
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The Motivation

Tagliabue et al., Front. in Climate (2021) Henson et al., Front. in Climate (2021)

CMIP6 projections show persistent uncertainty in:

Compromising our ability to predict/prepare for future climate state and 
evaluate climate intervention technologies

NPP Export Production&



In
te

r-
m

o
d

el
 S

td
 /

 I
n

te
r-

m
o

d
el

 M
ea

n

Sources of Uncertainty in CMIP6 Marine Carbon Cycle

1. The Problem

Uncertainty in projections, 
given the same forcing 
scenario, must come from 
uncertainty in the 
mechanistic meat of the 
model

To diagnose the problem, 
it is useful to compare 
their historical runs and 
see how other aspects of 
marine carbon cylcing 
differ 

Already, terms involving 
zooplankton biomass have 
the most uncertainty, but 
most models don’t save any 
information about grazing
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Computing Diagnostic Grazing Pressure



Zoo/Phytoplankton 
biomass is split into 
different size classes 
and…

Each arrow in more 
complex food webs 
can have different 
parameters

But most models 
aren’t so simple.

Computing Diagnostic Grazing Pressure
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G

g = G/ 

GP = G/ 

Monthly Output

Computing diagnostic grazing rates

Z P

DB

TO



2-3 zPFT
+ Active switching

1 zPFT

16 zPFT

a

b

c
Inter-model Variation in Emergent Grazing Pressure

• Emergent grazing pressure is the phytoplankton specific loss rate to grazing
• It accounts for the simulated grazing rate, prey field and zooplankton population size

43x difference!



This is not Normal!

Grazing Pressure 
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Sources of Uncertainty in CMIP6 Marine Carbon Cycle

Grazing terms
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2. (A path to) the solution 
1.    Prescribed Properties

2.     Emergent Properties

3.    Emergent Relationships

Model Code

Model Output

Compare parameters and equations 
to empirical observations

e.g. K1/2, gmax, PGI

Compare emergent properties of model 
output to observed properties 

e.g. Zooplankton Biomass, 
      Grazing Pressure

Compare emergent relationships in
model to observed relationships 

e.g Community-integrated 
     functional response

Model 
Diagnostics

Run Model
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1.    Prescribed Properties
Model CodeCompare parameters and equations 

to empirical observations

e.g. K1/2, gmax, PGI
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2.1 Prescribed Properties



2.1 Prescribed Properties
Functional response can be measured empirically in laboratory dilution experiments

𝐾
1

/2

𝑔𝑚𝑎𝑥



2.1 Prescribed Constraints
Giving us a range of realistic parameters. However, this range is about 3 orders of magnitude, and 
varies with zooplankton species, size and age, 
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Although, we can begin to constrain this range if we group zooplankton in functional groups, as they 
are grouped in models, which represent the mean state of many species/ages/size

2.1 Prescribed Constraints



Allowing us to quantify the statistical properties of Zooplankton groups that might be included in 
models 

Rohr et al. Progress in Oceanography (2022) 

2.1 Prescribed Constraints



Model Grazing Formulation

2.1 Prescribed Constraints

But grazing is not as simple as single-prey 
functional response curve.

Simulated zooplankton often have a variety 
of prey options, often with prey preferences, 
active switching and generally more complex 
response curves with >2 parameters.

These feature help models provide prey 
refuge and co-existence across simplified 
food webs.

But, obfuscate the direct translation of 
laboratory measured parameters to what 
goes into a model. 
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Introducing The Prescribed Grazing Index (PGI)

• The PGI takes into account ALL aspects of the grazing formulation and (/but) reduces the 
dimensionality of the functional response curve to 1 

• How fast would each of these zooplankton graze on a standardized amount of prey?
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Varies 3 orders of magnitude!!! The global Zoo. 
population is very 
diverse. The PGI varies 
across species, age, and 
size.

But models are tasked 
with only representing 
the mean state…

Different zooplankton 
graze on the same 
amount of 
phytoplankton at 
tremendously different 
rates!

The Prescribed Grazing Index (PGI)
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K1/2 (mmol m-3)

g m
ax

 (d
-1

)

Range is still large , 
but gets smaller 
when you group 
into functional 
types.

Ideally, in models 
with 1-3 functional 
types, it should get 
even smaller, as these 
represent mean 
properties of diverse 
global community

So how can we define 
the PGI in models to 
compare?



Introducing the Prescribed Grazing Index (PGI)

Model Grazing Formulation Observed Median Plankton Community
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The PGI tells us how fast 
the average zooplankton 
in a given model would 
graze on the global 
median plankton 
community

…And varies by nearly 2 
orders of magnitude!

Rohr et al. Communications Earth & Env (2023) 



CMOC

W
O

M
B

AT (2)
P

IS
C

E
Sv

2
 (

1
3

)

P

P

Z

Z

Z

D

D

B

B

OECO-v2

MEDUSA2.1

iHAMOCC

CanOE

BFM 5.2

MARBL

PISCESv2

Z

Z

Psm

Pdz

Pdz

Plg

Plg

Plg

Plg

Plg

Plg

Psm

Psm

Psm

Psm

Psm

Psm

Zlg

Zmd

Zmd

Zmd

Zmd

Zmd

Zsm

Zsm

Zsm

Zsm

Zsm

P

Pdz
WOMBAT

COBALTv2

Empirical
Parameters

Formulation in
Models

a.

0.008 0.016 0.031 0.063 0.125 0.25 0.5 1
-10

-5

0

MesoZ & MicroZ

Copepods

Rotifers

Dinoflagellates

MicroZ

Nanoflagellates

Ciliates

MesoZ
Cladocerans

Mero-
Plankton

Larvae

b.

72x

The PGI range across all 
surveyed CMIP6 models, 
is roughly as large as the 
middle 80% of all 
surveyed zooplankton 
species (0.005–0.55 d−1),

… And greater than 
the range of observed 
Zooplankton 
functional Types

Rohr et al. Communications Earth & Env (2023) 
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72x

Statistically, this means 
some BGC models 
assume an ocean filled 
with rapidly grazing 
ciliates, and others 
with slow grazing 
Larvae!

But, is that really 
fair? 

The PGI reduces a 
highly multi-variate 
function into a single 
number.

And could be 
compensated for by 
zooplankton 
mortality rates

So doesn’t it must 
miss a lot…? 

Rohr et al. Communications Earth & Env (2023) 
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(An Emergent Property)

r2 = .80  p<.001r2 = .63  p<.001

PGI is best predictor of 
emergent grazing 
pressure!
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…And Much Better than Biomass or Mortality
• Across models, differences in emergent grazing pressure appears mostly driven by differences in specific 

grazing rates, rather than zooplankton biomass or mortality

• So from phytoplankton perspective, what matters most is how fast individual zooplankton are grazing, not how 
many zooplankton there are or how fast they are dying.



Rohr et al. Communications Earth & Env (2023) 

2.1 Prescribed Constraints

So before running a 
single simulation, 
modeler should make 
sure they are 
prescribing a 
reasonable PGI
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1.    Prescribed Properties

2.     Emergent Properties

Model Code

Model Output

Compare parameters and equations 
to empirical observations

e.g. K1/2, gmax, PGI

Compare emergent properties of model 
output to observed properties 

e.g. Zooplankton Biomass, 
      Grazing Pressure

Run Model
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2.2 Emergent Properties

Tune Model
    Parameters



Zooplankton Biomass

Petrick et al. GBC (2022) 

Statistical estimates of 
zooplankton biomass 
distributions can, and 
should be used to tune 
models 



Zooplankton Biomass

Statistical estimates of 
zooplankton biomass 
distributions can, and 
should be used to tune 
models 

But, isn’t a strong 
driver of grazing 
pressure, so can’t do 
the whole job without 
information about 
grazing rates

r2 =-.09  p=.684



‘Observed’ Grazing Pressure
𝑑𝑃

𝑑𝑡
= 𝑢𝑃 − 𝑚𝑃 − 𝑎𝑃2 − 𝐸𝑛𝑡𝑟𝑎𝑖𝑛𝑚𝑒𝑛𝑡 − 𝑔𝑍 

Time-rate of change of 
phytoplankton biomass

NPP
Linear + Non-linear
Non-grazing losses

Physical 
dilution/entrainment of 

biomass below MLD 
during when MLD 

deepens

Grazing Losses
    (GP =gZ/P)



𝒅𝑷

𝒅𝒕
= 𝑢𝑷 − 𝑚𝑷 − 𝑎𝑷𝟐 − 𝐸𝑛𝑡𝑟𝑎𝑖𝑛𝑚𝑒𝑛𝑡 − 𝑔𝑍 

‘Observed’ Grazing Pressure

Optical backscattering + 
Empirical Relationship to 
phytoplankton biomass 

(Graff et al., 2015)



𝑑𝑃

𝑑𝑡
= 𝒖𝑃 − 𝑚𝑃 − 𝑎𝑃2 − 𝐸𝑛𝑡𝑟𝑎𝑖𝑛𝑚𝑒𝑛𝑡 − 𝑔𝑍 

‘Observed’ Grazing Pressure

Carbon-based Prod. Model
f(C:Chl, SST, Nutrients)



𝑑𝑃

𝑑𝑡
= 𝑢𝑃 − 𝒎𝑷 − 𝒂𝑷𝟐 − 𝐸𝑛𝑡𝑟𝑎𝑖𝑛𝑚𝑒𝑛𝑡 − 𝑔𝑍 

‘Observed’ Grazing Pressure



𝑑𝑃

𝑑𝑡
= 𝑢𝑃 − 𝑚𝑃 − 𝑎𝑃2 − 𝑬𝒏𝒕𝒓𝒂𝒊𝒏𝒎𝒆𝒏𝒕 − 𝑔𝑍 

‘Observed’ Grazing Pressure



𝑑𝑃

𝑑𝑡
= 𝑢𝑃 − 𝑚𝑃 − 𝑎𝑃2 − 𝐸𝑛𝑡𝑟𝑎𝑖𝑛𝑚𝑒𝑛𝑡 − 𝒈𝒁 

‘Observed’ Grazing Pressure

Algebra! 
Grazing Pressure = gZ/P



𝑑𝑃

𝑑𝑡
= 𝑢𝑃 − 𝑚𝑃 − 𝑎𝑃2 − 𝐸𝑛𝑡𝑟𝑎𝑖𝑛𝑚𝑒𝑛𝑡 − 𝒈𝒁 

‘Observed’ Grazing Pressure



‘Observed’ Grazing Pressure
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2.3 Emergent Relationships
1.    Prescribed Properties

2.     Emergent Properties

3.    Emergent Relationships

Model Code

Model Output

Compare parameters and equations 
to empirical observations

e.g. K1/2, gmax, PGI

Compare emergent properties of model 
output to observed properties 

e.g. Zooplankton Biomass, 
      Grazing Pressure

Compare emergent relationships in
model to observed relationships 

e.g Community-integrated 
     functional response

Model 
Diagnostics

Run Model
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The Apparent Functional Response
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Rohr et al. GRL (2024) 



Rohr et al. GRL (2024) 
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The Apparent Functional Response



Meyers et al. GBC (Under Review) 
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The Apparent Functional Response



The Apparent Functional Response
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Putting It All Together In ACCESS
1.    Prescribed Properties

2.     Emergent Properties

3.    Emergent Relationships

Compare parameters and equations 
to empirical observations

e.g. K1/2, gmax, PGI

Compare emergent properties of model 
output to observed properties 

e.g. Zooplankton Biomass, 
      Grazing Pressure

Compare emergent relationships in
model to observed relationships 

e.g Community-integrated 
     functional response
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Thank You and Questions

Elizabeth Shadwick, Andrew Lenton, Anthony Richardson, Matthew Chamberlain 
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