Beyond closure:
Towards a world where
grazing is constrained in
biogeochemical models

Tyler Rohr

ARC DECRA Fellow

IMAS – Lecturer in SO Biogeochemical Modelling

Zooplankton and the Marine Carbon Cycle

Steinberg & Landry, An. Review of Marine Science (2017)

Overview

2. Zooplankton grazing is the largest source of uncertainty for marine carbon cycling in CMIP6 models

Tyler Rohr ☑, Anthony J. Richardson, Andrew Lenton, Matthew A. Chamberlain & Elizabeth H. Shadwick

Sources of Uncertainty in CMIP6 Marine Carbon Cycle

2.

Constraints

of

Tiers

Three

1. <u>Prescribed Properties</u>

Compare parameters and equations to empirical observations

2. Emergent Properties

Compare emergent properties of model output to observed properties

e.g. Zooplankton Biomass, <u>Grazing Pressure</u>

3. Emergent Relationships

Compare emergent relationships in model to observed relationships

e.g <u>Community-integrated</u> functional response

Appendix 1 – Models

Earth System Models

- Slice the Earth up into heaps of little boxes
- Solve some of differential equations
- Transform and move mass/energy around

Marine Biogeochemical (BGC) Models

- The bit that determines how 'stuff' in the ocean biologically and chemically transforms.
- Which then gets tossed about by physics
- And allow for 2-way climate-biogeochemical feedbacks

Appendix 2 – Grazing Rate Semantics

Bulk phytoplankton loss rate to grazing (G)

- Rate all phytoplankton are killed by zooplankton
- ~Gross Secondary Production w/o the sloppy feeding

Zooplankton (specific) grazing rate (g)

- Rate 'individual' zooplankton graze phytoplankton
- Phytoplankton grazed per unti zooplankton per time

$$g = G/$$
(1/time)

Grazing Pressure (GP)

- The phytoplankton specific loss rate to grazing
- Phytoplankton grazed per unit phytoplankton per time
- Increases with zooplankton biomass and their specific grazing rate

Appendix 3 – The Functional Response Curve

Food-replete, metabolism/digestion limited grazing rate

Food-scarce,
Prey-limited grazing

The Motivation

CMIP6 projections show persistent uncertainty in:

Compromising our ability to predict/prepare for future climate state and evaluate climate intervention technologies

1. The Problem

Sources of Uncertainty in CMIP6 Marine Carbon Cycle

Uncertainty in projections, given the same forcing scenario, must come from uncertainty in the mechanistic meat of the model

To diagnose the problem, it is useful to compare their historical runs and see how other aspects of marine carbon cylcing differ

Already, terms involving

zooplankton biomass have
the most uncertainty, but
most models don't save any
information about grazing

Computing Diagnostic Grazing Pressure

Computing Diagnostic Grazing Pressure

But most models aren't so simple.

Zoo/Phytoplankton biomass is split into different size classes and...

Each arrow in more complex food webs can have different parameters

Computing diagnostic grazing rates

Monthly Output

			Zoo. Groups	Prey Options (i) Preference (p_i) for Prey i	Grazing For Functional Response for Grazing on Prey Option i	Prescribed Grazing Index (w/ ±25% Prey)	
	iHAMOCC NorESM2-LM	P → Z	Zoo. (Z)	Phytoplankton (P)	$\frac{\mathrm{g}_i(P_i-\mathrm{P_{th}})}{\mathrm{K}_i+(P_i)}$	$Values A \\ g_i = 1.20 \\ K_i = 9.76 \\ P_{th} = 0.001$	0.089 (0.068,0.109)
	CMOC; CanESM5	P → Z	Zoo. (Z)	Phytoplankton (P)	$\frac{\mathbf{g}_i P_i^2}{\mathbf{K}_i^2 + P_i^2}$	$g_i = 2.00$ $K_i = 1.33$	0.520 (0.330,0.708)
	WOMBAT; ACCESS ESM1.5	<u>P</u> → <u>Z</u>	Zoo. (Z)	Phytoplankton (P)	$\frac{\mathrm{g}_i P_i^2}{\mathrm{K}_i^2 + P_i^2}$	$g_i = 1.58$ $K_i = 6.57^B$	0.022 (0.013,0.034)
	OECO-v2; MIROC-ES2L	P _{sm} Z	Zoo. (Z)	Non-Diazatrophs (P_{sm}) , Diazatrophs (P_{dz})	$\frac{\mathbf{g}_i P_i^2}{\mathbf{K}_i^2 + P_i^2}$	$\begin{aligned} \mathbf{g}_i &= 2.00 \\ \mathbf{K}_i &= 9.37 \ ^B \end{aligned}$	0.014 (0.008,0.022)
	MARBL; CESM2	P _{sm} Z	Zoo. (Z)	$\begin{array}{c} \text{Small Phyto. } (P_{sm}), \\ \text{Diatoms } (P_{lg}), \\ \text{Diazatrophs } (P_{dz}) \end{array}$	$T_{Lim} rac{{ m g}_i(P_i-{ m P}_{ m th})}{{ m K}_i+(P_i-{ m P}_{ m th})} \ { m T}_{Lim} = 1.7^{(T-30)/10}$	$\begin{aligned} \mathbf{g}_{Psm,Plg} &= 2.20 \\ \mathbf{g}_{Pdz} &= 3.15 \\ \mathbf{K}_i &= 1.20 \\ \mathbf{P}_{\mathrm{th}} &= f(z,T,i) \\ &= 0.0002 \end{aligned}$	0.637 (0.499,0.761)
	CanOE;	P_{sm} Z_{sm}	Microzoo. (Z_{sm})	Small Phytoplankton (P_{sm}) —	$g_i(1 - e^{-\lambda_i P_i})$	$g_i = 1.70$ $\lambda_i = 0.25$ 0.125	
	CanESM5-CanOE	(P _{lg})> Z _{md}	Mesozoo. (Z_{md})	Large Phytoplankton (P_{lg}) , Microzooplankton (Z_{sm})	$g_i(1 - e^{-\lambda_i \Sigma P_i}) \left(\frac{P_i}{\Sigma P_i}\right)$	$\mathbf{g}_i = 0.85$ $\lambda_i = 0.25$	(0.095,0.155)
	MEDUSA2.1;	P _{sm} > Z _{sm}	$Microzoo.$ (Z_{sm})	Non-Diatoms (P_{sm}) , Detritus (D) $p_{Psm} = 0.75, p_D = 0.25$	$\frac{\mathbf{g_i}\mathbf{p_i}P_i^2}{\mathbf{K_i^2} + \Sigma\mathbf{p_i}P_i^2}$	$g_i = 2.00$ $K_i = 5.30$	0.009
	UKESM1-0-LL		Mesozoo (Z_{md})	Non-Diatoms (P_{sm}) , Diatoms (P_{lg}) , Detritus (D) , Micro Zoo. (Z_{sm}) $p_{Psm,D} = 0.15$, $p_{Plg,Zsm} = 0.35$	$\frac{\mathrm{g}_{i}\mathrm{p}_{i}P_{i}^{2}}{\mathrm{K}_{i}^{2}+\Sigma\mathrm{p}_{i}P_{i}^{2}}$	$\begin{aligned} \mathbf{g}_i &= 0.50 \\ \mathbf{K}_i &= 1.99 \end{aligned}$	(0.005,0.014)
	PISCESv2; IPSL-CM6a-LR	P _{sm} v > Z _{sm} v	$Microzoo.$ (Z_{sm})	Nanophyto. (P_{sm}) , Diatoms (P_{lg}) , POC (D) $p_{Psm} = 1, p_{Plg} = 0.5, p_D = 0.1$	$T_{Lim}F_{Lim}\frac{\mathbf{g}_{i}\mathbf{p}_{i}(P_{i}-\mathbf{P}_{\mathrm{th}})}{\mathbf{K}_{i}+\Sigma\mathbf{p}_{i}P_{i}}$ $T_{Lim}=1.079^{T}$	$g_i = 3.00$ $K_i = 20.00$ $P_{th} = 0.001^D$	0.116
	& CNRM-ESM2.1	Pla Zmd	Mesozoo. (Z_{md})	Nanophyto. (P_{sm}) , Diatoms (P_{lg}) , POC (D) , Micro Zoo. (Z_{sm}) $p_{Psm,D} = 0.30$, $p_{Plg,Zsm} = 1$	$T_{Lim}F_{Lim}\frac{\mathbf{g}_{i}\mathbf{p}_{i}(P_{i}-\mathbf{P}_{th})}{\mathbf{K}_{i}+\Sigma\mathbf{p}_{i}P_{i}}$ $T_{Lim}=1.079^{T}$	$g_i = 0.75$ $K_i = 20.00$ $P_{th} = 0.001^D$	(0.080,0.153)
	BFM5.2; CMCC-ESM2	12 P ₃ B	Microzoo. (Z_{sm})	$\begin{aligned} & \text{Nanoflagellates} \; (P_{sm}), \text{Diatoms} \; (P_{lg}), \\ & \text{Bacteria} \; (B), \text{Micro Zoo.} \; (Z_{sm}) \\ & p_i = \phi_i \frac{P_i}{P_i + 1.67} \\ & \phi_{Psm} = 1, \phi_D = 0.01, \phi_{B,Zsm} = 0.2 \end{aligned}$	$\frac{\mathrm{g_i p_i} P_i}{\mathrm{K}_i + \Sigma \mathrm{p_i} P_i}$ $T_{Lim} = 2^{(T-10)/10}$	$\mathbf{g}_i = 3.00$ $\mathbf{K}_i = 1.67$	0.184 (0.122,0.253)
			Z_{md} Mesozoo. (Z_{md})	$\begin{aligned} & \text{Diatoms } (P_{lg}), \text{Micro Zoo. } (Z_{sm}), \\ & \text{Meso Zoo } (Z_{md}) \\ & \text{p}_{Plg,Zmd} = 1, \text{p}_{Zsm} = 0.5 \end{aligned}$	$\frac{\mathbf{g}_i \mathbf{p}_i P_i}{\mathbf{K}_i + \Sigma \mathbf{p}_i P_i}$ $T_{Lim} = 2^{(T-10)/10}$	${f g}_i = 2.00$ ${f K}_i = 6.66$ B	
			$\begin{array}{c} \text{Small} \\ \text{Zoo.} \\ (Z_{sm}) \end{array}$	Small Phyto. (P_{sm}) , Bacteria (B) $\mathbf{p}_i = \frac{\phi_i(P_i - \mathbf{P}_{th})}{\sqrt{\Sigma(\phi_i(P_i - \mathbf{P}_{th}))^2}}$ $\phi_{Psm} = 1, \phi_B = 0.25$	$T_{Lim} \frac{g_i p_i (P_i - P_{th})}{K_i + \Sigma p_i (P_i - P_{th})}$ $T_{Lim} = e^{.063T}$	${f g}_i = 1.28$ ${f K}_i = 8.28$ ${f P}_{ m th} = 0.001$	
	COBALTv2; GFDL-ESM4.1		$egin{array}{c} ext{Medium} \ ext{Zoo.} \ (Z_{md}) \ \end{array}$	Large Phyto. (P_{tg}) , Diazatrophs (P_{dz}) , Small Zoo. (Z_{sm}) $p_i = \frac{\phi_i(P_i - P_{th})}{\sqrt{\Sigma(\phi_i(P_i - P_{th}))^2}}$ $\phi_i = 1$	$T_{Lim} \frac{\mathrm{g_i} \mathrm{p_i} (P_i - \mathrm{P_{th}})}{\mathrm{K_i} + \Sigma \mathrm{p_i} (P_i - \mathrm{P_{th}})}$ $T_{Lim} = e^{.063T}$	$egin{aligned} {f g}_i &= 0.57 \ {f K}_i &= 8.28 \ {f P}_{ m th} &= 0.001 \end{aligned}$	0.105 (0.075,0.136)
			$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$	Large Phyto. (P_{lg}) , Diazatrophs (P_{dz}) , Medium Zoo. (Z_{md}) $p_i = \frac{\phi_i(P_i - P_{th})}{\sqrt{\Sigma(\phi_i(P_i - P_{th}))^2}}$ $\phi_i = 1$	$T_{Lim} \frac{\mathrm{g_i p_i}(P_i - \mathrm{P_{th}})}{\mathrm{K}_i + \Sigma \mathrm{p_i}(P_i - \mathrm{P_{th}})}$ $T_{Lim} = e^{.063T}$	$egin{aligned} { m g}_i &= 0.23 \ { m K}_i &= 8.28 \ { m P}_{ m th} &= 0.001 \end{aligned}$	

$$g = G/$$

$$GP = G/$$

Inter-model Variation in Emergent Grazing Pressure

- Emergent grazing pressure is the **phytoplankton specific loss rate to grazing**
- It accounts for the simulated grazing rate, prey field and zooplankton population size

This is not Normal!

Grazing terms

2. (A path to) the solution

1. <u>Prescribed Properties</u>

Compare parameters and equations to empirical observations

e.g. K_{1/2}, g_{max}, <u>PGI</u>

Compare emergent properties of model output to observed properties

e.g. Zooplankton Biomass, Grazing Pressure

3. <u>Emergent Relationships</u>

Compare emergent relationships in model to observed relationships

e.g <u>Community-integrated</u> functional response

Model Code

Model Output

Model Diagnostics

2.1 Prescribed Properties

1. <u>Prescribed Properties</u>

Compare parameters and equations to empirical observations

e.g. $K_{1/2}$, g_{max} , \underline{PGI}

Model Code

2.1 Prescribed Properties

Functional response can be measured empirically in laboratory dilution experiments

Giving us a range of realistic parameters. However, this range is about 3 orders of magnitude, and varies with zooplankton species, size and age,

Although, we can begin to constrain this range if we group zooplankton in functional groups, as they are grouped in models, which represent the mean state of many species/ages/size

Allowing us to quantify the statistical properties of Zooplankton groups that might be included in models

b) Empirical Estimates: Sample Statistics by Size Class

Size	Size $K_{1/2}$ $(mmolC/m^3)$			g_{max} $(1/d)$			$\epsilon \ (m^3/mmolC/d)$					
Class	mean	med.	range	IQR	mean	med.	range	IQR	mean	med.	range	IQR
All zooplankton	40	16	$8.3e^{-2}$	6.4	3.7	1.6	$2.1e^{-2}$	0.46	0.49	$8.4e^{-2}$	$3.4e^{-3}$	$2.1e^{-2}$
n=119		10	500	43			46	3.8			9.5	0.27
Nanozooplankton	37	23	1.7	10	13	10	1.1	7.0	1.1	0.40	$3.0e^{-2}$	0.22
n=19		23	120	62			46	19			9.5	0.85
Microzooplankton	25	8.9	0.41	4.5	3.6	3.0	0.11	2.2	0.71	0.25	$9.1e^{-3}$	$9.0e^{-2}$
n=30	∠0	0.9	210	17			12	4.1			8.8	0.78
Mesozooplankton	45	45 18	$8.0e^{-2}$	5.8	1.3	0.77	$2.0e^{-2}$	0.29	0.24	$4.0e^{-2}$	$3.4e^{-3}$	$1.0e^{-2}$
n=64			500	45	0.77	8.2	1.8	0.24	4.06	9.1	0.10	

Rohr et al. Progress in Oceanography (2022)

Model Grazing Formulation

	BGC Model; Earth System Model	Food Web Schematic	Zoo. Groups	$ \begin{array}{c} \textbf{Prey Options } (i) \\ \textbf{Preference } (\textbf{p}_i) \textbf{ for Prey i} \end{array} $	Grazing For Functional Response for Grazing on Prey Option i	mulation Parameter Values A	Prescribed Grazing Index (w/ ±25% Prey)						
	iHAMOCC NorESM2-LM	<u>P</u> → <u>Z</u>	Zoo. (Z)	Phytoplankton (P)	$\frac{\mathrm{g}_i(P_i-\mathrm{P_{th}})}{\mathrm{K}_i+(P_i)}$	$egin{aligned} \mathbf{g}_i &= 1.20 \\ \mathbf{K}_i &= 9.76 \\ \mathbf{P}_{\mathrm{th}} &= 0.001 \end{aligned}$	0.089 (0.068,0.109)						
	CMOC; CanESM5	<u>P</u> → <u>Z</u>	Zoo. (Z)	Phytoplankton (P)	$\frac{\mathbf{g}_i P_i^2}{\mathbf{K}_i^2 + P_i^2}$	$g_i = 2.00$ $K_i = 1.33$	0.520 (0.330,0.708)						
	WOMBAT; ACCESS ESM1.5	<u>P</u> → <u>Z</u>	Zoo. (Z)	Phytoplankton (P)	$\frac{\mathbf{g}_i P_i^2}{\mathbf{K}_i^2 + P_i^2}$	$g_i = 1.58$ $K_i = 6.57^B$	0.022 (0.013,0.034)						
	OECO-v2; MIROC-ES2L	P _{sm} Z	Zoo. (Z)	Non-Diazatrophs (P_{sm}) , Diazatrophs (P_{dz})	$\frac{\mathbf{g}_i P_i^2}{\mathbf{K}_i^2 + P_i^2}$	$g_i = 2.00$ $K_i = 9.37$ B	0.014 (0.008,0.022)						
	MARBL; CESM2	P _{sm} Z	Zoo. (Z)	$egin{array}{lll} ext{Small Phyto. } (P_{sm}), & ext{Diatoms } (P_{lg}), & ext{Diazatrophs } (P_{dz}) & ext{} & ext{} & ext{} & ext{} \end{array}$	$T_{Lim} rac{{ m g}_i(P_i-{ m P}_{ m th})}{{ m K}_i+(P_i-{ m P}_{ m th})}$ ${ m T}_{Lim}=1.7^{(T-30)/10}$	$\begin{aligned} g_{Psm,Plg} &= 2.20 \\ g_{Pdz} &= 3.15 \\ K_i &= 1.20 \\ P_{th} &= f(z,T,i) \\ &= 0.0002 \end{aligned}$	$0.637 \\ (0.499, 0.761)$						
	CanOE;	P_{sm} \longrightarrow Z_{sm}	Microzoo. (Z_{sm})	Small Phytoplankton (P _{sm})	$g_i(1 - e^{-\lambda_i P_i})$	$g_i = 1.70$ $\lambda_i = 0.25$	0.125						
	CanESM5-CanOE	(P _{lg})> Z _{md}	Mesozoo. (Z_{md})	Large Phytoplankton (P_{lg}) , Microzooplankton (Z_{sm})	$g_i(1 - e^{-\lambda_i \Sigma P_i}) \left(\frac{P_i}{\Sigma P_i}\right)$	$\mathbf{g}_i = 0.85$ $\lambda_i = 0.25$	(0.095,0.155)						
	MEDUSA2.1;	$P_{sm} > Z_{sm}$	$P_{sm} \rightarrow Z_{sm}$	$P_{sm} \rightarrow Z_{sm}$	Microzoo. (Z_{sm})	Non-Diatoms (P_{sm}) , Detritus (D) $p_{Psm} = 0.75, p_D = 0.25$	$\frac{\mathbf{g}_i\mathbf{p}_iP_i^2}{\mathbf{K}_i^2+\Sigma\mathbf{p}_iP_i^2}$	$g_i = 2.00$ $K_i = 5.30$	0.009				
	UKESM1-0-LL	Ply - Zmd	Mesozoo (Z_{md})	Non-Diatoms (P_{sm}) , Diatoms (P_{lg}) , Detritus (D) , Micro Zoo. (Z_{sm}) $p_{Psm,D} = 0.15$, $p_{Plg,Zsm} = 0.35$	$\frac{\mathbf{g}_i \mathbf{p}_i P_i^2}{\mathbf{K}_i^2 + \Sigma \mathbf{p}_i P_i^2}$	$\begin{aligned} \mathbf{g}_i &= 0.50 \\ \mathbf{K}_i &= 1.99 \end{aligned}$	(0.005,0.014)						
	PISCESv2; IPSL-CM6a-LR	P→ 7	$(P_{sm})_{\nabla} \rightarrow (Z_{sm})_{\nabla}$	P_{sm} $\rightarrow Z_{sm}$	P_{sm} $\rightarrow Z_{sm}$	P_{sm} $\sim Z_{sm}$	P_{sm} $\rightarrow Z_{sm}$	P_{sm} $\rightarrow Z_{sm}$	Microzoo. (Z_{sm})	Nanophyto. (P_{sm}) , Diatoms (P_{lg}) , POC (D) $p_{Psm} = 1, p_{Plg} = 0.5, p_D = 0.1$	$T_{Lim}F_{Lim}\frac{\mathbf{g_i}\mathbf{p_i}(P_i - \mathbf{P_{th}})}{\mathbf{K_i} + \Sigma\mathbf{p_i}P_i}$ $T_{Lim} = 1.079^T$	$g_i = 3.00$ $K_i = 20.00$ $P_{th} = 0.001^D$	0.116
	& CNRM-ESM2.1	P _{lg} Z _m	Mesozoo. (Z_{md})	Nanophyto. (P_{sm}) , Diatoms (P_{lg}) , POC (D) , Micro Zoo. (Z_{sm}) $p_{Psm,D} = 0.30, p_{Plg,Zsm} = 1$	$T_{Lim} = 1.075$ $T_{Lim} F_{Lim} \frac{g_i p_i (P_i - P_{th})}{K_i + \Sigma p_i P_i}$ $T_{Lim} = 1.079^T$	$g_i = 0.75$ $K_i = 20.00$ $P_{th} = 0.001^D$	(0.080,0.153)						
	BFM5.2; CMCC-ESM2		P _{sm} B (A	P _a Z _a B	P _m B	P _{sy} B	P_{sm} Z_{sm} (Z_{sm})	Microzoo. (Z_{sm})	$\begin{aligned} & \text{Nanoflagellates} \left(P_{sm}\right), \text{ Diatoms} \left(P_{lg}\right), \\ & \text{Bacteria} \left(B\right), \text{ Micro Zoo. } (Z_{sm}) \\ & p_i = \phi_i \frac{P_i}{P_i + 1.67} \\ & \phi_{Psm} = 1, \ \phi_D = 0.01, \ \phi_{B,Zsm} = 0.2 \end{aligned}$	$\frac{\mathrm{g_ip_i}P_i}{\mathrm{K}_i + \mathrm{\Sigma}\mathrm{p_i}P_i}$ $T_{Lim} = 2^{(T-10)/10}$	$egin{aligned} \mathbf{g}_i &= 3.00 \ \mathbf{K}_i &= 1.67 \end{aligned}$	0.184 (0.122,0.253)	
								Play > Zmd	P _{lg}) ⁻ → Z _{md}	$(P_{lg})^{\perp} \rightarrow Z_{md}$		(P _{lg}) ² → Z _{md}	P _a y → Z _{ma}
			$\begin{array}{c} \text{Small} \\ \text{Zoo.} \\ (Z_{sm}) \end{array}$	Small Phyto. (P_{sm}) , Bacteria (B) $\mathbf{p}_i = \frac{\phi_i(P_i - \mathbf{p}_{\text{th}})}{\sqrt{\Sigma(\phi_i(P_i - \mathbf{p}_{\text{th}}))^2}}$ $\phi_{Psm} = 1, \phi_B = 0.25$	$T_{Lim} \frac{g_i p_i (P_i - P_{th})}{K_i + \Sigma p_i (P_i - P_{th})}$ $T_{Lim} = e^{.063T}$	${f g}_i = 1.28$ ${f K}_i = 8.28$ ${f P}_{ m th} = 0.001$							
	COBALTV2; GFDL-ESM4.1		$ \begin{array}{c} \text{Medium} \\ \text{Zoo.} \\ (Z_{md}) \end{array} $ $ \begin{array}{c} \text{Large} \\ \text{Zoo.} \\ (Z_{lg}) \end{array} $	Large Phyto. (P_{lg}) , Diazatrophs (P_{dx}) , Small Zoo. (Z_{sm}) $p_i = \frac{\phi_i(P_i - P_{th})}{\sqrt{\Sigma(\phi_i(P_i - P_{th}))^2}}$ $\phi_i = 1$	$T_{Lim} \frac{g_i p_i (P_i - P_{th})}{K_i + \Sigma p_i (P_i - P_{th})}$ $T_{Lim} = e^{.063T}$	$egin{aligned} { m g}_i &= 0.57 \ { m K}_i &= 8.28 \ { m P}_{ m th} &= 0.001 \end{aligned}$	0.105 (0.075,0.136)						
				Large Phyto. (P_{tg}) , Diazatrophs (P_{dz}) , Medium Zoo. (Z_{md}) $p_i = \frac{\phi_i(P_i - P_{th})}{\sqrt{\Sigma(\phi_i(P_i - P_{th}))^2}}$ $\phi_i = 1$	$T_{Lim} \frac{\mathrm{g}_i \mathrm{p}_i (P_i - \mathrm{P}_{\mathrm{th}})}{\mathrm{K}_i + \Sigma \mathrm{p}_i (P_i - \mathrm{P}_{\mathrm{th}})}$ $T_{Lim} = e^{.063T}$	$g_i = 0.23$ $K_i = 8.28$ $P_{th} = 0.001$							

But grazing is not as simple as single-prey functional response curve.

Simulated zooplankton often have a variety of prey options, often with prey preferences, active switching and generally more complex response curves with >2 parameters.

These feature help models provide prey refuge and co-existence across simplified food webs.

But, obfuscate the direct translation of laboratory measured parameters to what goes into a model.

Introducing The Prescribed Grazing Index (PGI)

 The PGI takes into account ALL aspects of the grazing formulation and (/but) reduces the dimensionality of the functional response curve to 1

How fast would each of these zooplankton graze on a standardized amount of prey?

The Prescribed Grazing Index (PGI)

Different zooplankton graze on the same amount of phytoplankton at tremendously different rates!

The global Zoo. population is very diverse. The PGI varies across species, age, and size.

But models are tasked with only representing the mean state...

Range is still large, but gets smaller when you group into functional types.

Introducing the Prescribed Grazing Index (PGI)

Model Grazing Formulation

BGC Model;	Food Web	Zoo.	Prey Options (i)		Grazing Formulation		
Earth System Model	Schematic	Groups	Preference (p _i) for Prey i	Functional Response for Grazing on Prey Option i	Parameter Values ^A	Grazing Index (w/ ±25% Prey)	
iHAMOCC NorESM2-LM	<u>P</u> → <u>Z</u>	Zoo. (Z)	Phytoplankton (P)	$\frac{\mathrm{g}_i(P_i-\mathrm{P_{th}})}{\mathrm{K}_i+(P_i)}$	$g_i = 1.20$ $K_i = 9.76$ $P_{th} = 0.001$	0.089 (0.068,0.109)	
CMOC; CanESM5	<u>P</u> → <u>Z</u>	Zoo. (Z)	Phytoplankton (P)	$\frac{\mathrm{g}_i P_i^2}{\mathrm{K}_i^2 + P_i^2}$	$g_i = 2.00$ $K_i = 1.33$	0.520 (0.330,0.708)	
WOMBAT; ACCESS ESM1.5	(P) → (Z)	Zoo. (Z)	Phytoplankton (P)	$\frac{\mathrm{g}_i P_i^2}{\mathrm{K}_i^2 + P_i^2}$	$g_i = 1.58$ $K_i = 6.57^B$	0.022 $(0.013, 0.034)$	
OECO-v2; MIROC-ES2L	P _{sm} Z	Zoo. (Z)	Non-Diazatrophs (P_{sm}) , Diazatrophs (P_{dz})	$\frac{\mathbf{g}_i P_i^2}{\mathbf{K}_i^2 + P_i^2}$	$g_i = 2.00$ $K_i = 9.37$ ^B	0.014 (0.008,0.022)	
MARBL; CESM2	P _{sn} Z	Zoo. (Z)	$egin{array}{lll} ext{Small Phyto. } (P_{sm}), & ext{Diatoms } (P_{lg}), & ext{Diazatrophs } (P_{dz}) & ext{} & ext{} & ext{} & ext{} \end{array}$	$T_{Lim} rac{{ m g_i}(P_{ m i}-{ m P_{th}})}{{ m K}_i+(P_{ m i}-{ m P_{th}})} \ { m T}_{Lim} = 1.7^{(T-30)/10}$	$ \begin{aligned} \mathbf{g}_{Psm,Plg} &= 2.20 \\ \mathbf{g}_{Pdz} &= 3.15 \\ \mathbf{K}_i &= 1.20 \\ \mathbf{P}_{\text{th}} &= f(z,T,i) \\ &= 0.0002 \end{aligned} $	0.637 (0.499,0.761)	
CanOE;	P_{sm} Z_{sm}	Microzoo. (Z_{sm})	Small Phytoplankton (P _{sm})	$g_i(1-e^{-\lambda_i P_i})$	$g_i = 1.70$ $\lambda_i = 0.25$	0.125 (0.095,0.155)	
CanESM5-CanOE	(P _{lg})> Z _{md}	Mesozoo. (Z_{md})	Large Phytoplankton (P_{lg}) , Microzooplankton (Z_{sm})	$g_i(1 - e^{-\lambda_i \Sigma P_i}) \left(\frac{P_i}{\Sigma P_i}\right)$	$\mathbf{g}_i = 0.85$ $\lambda_i = 0.25$		
MEDUSA2.1;	A2.1;		Non-Diatoms (P_{sm}) , Detritus (D) $p_{Psm} = 0.75, p_D = 0.25$	$\frac{\mathbf{g}_i \mathbf{p}_i P_i^2}{\mathbf{K}_i^2 + \Sigma \mathbf{p}_i P_i^2}$	$\begin{aligned} \mathbf{g}_i &= 2.00 \\ \mathbf{K}_i &= 5.30 \end{aligned}$	0.009	
UKESM1-0-LL	Ply - Zmd	Mesozoo (Z_{md})	Non-Diatoms (P_{sm}) , Diatoms (P_{lg}) , Detritus (D) , Micro Zoo. (Z_{sm}) $p_{Psm,D} = 0.15$, $p_{Plg,Zsm} = 0.35$	$\frac{\mathbf{g}_i \mathbf{p}_i P_i^2}{\mathbf{K}_i^2 + \Sigma \mathbf{p}_i P_i^2}$	$\begin{aligned} \mathbf{g}_i &= 0.50 \\ \mathbf{K}_i &= 1.99 \end{aligned}$	(0.005,0.014)	
PISCESv2; IPSL-CM6a-LR	P_{sm} $\rightarrow Z_{sm}$	Microzoo. (Z_{sm})	Nanophyto. (P_{sm}) , Diatoms (P_{lg}) , POC (D) $p_{Psm} = 1, p_{Plg} = 0.5, p_D = 0.1$	$T_{Lim}F_{Lim}\frac{\mathbf{g}_{i}\mathbf{p}_{i}(P_{i}-\mathbf{P}_{th})}{\mathbf{K}_{i}+\Sigma\mathbf{p}_{i}P_{i}}$ $T_{Lim}=1.079^{T}$	$g_i = 3.00$ $K_i = 20.00$ $P_{th} = 0.001^D$	0.116	
& CNRM-ESM2.1	P _{lg} Z _m	Mesozoo. (Z_{md})	Nanophyto. (P_{sm}) , Diatoms (P_{lg}) , POC (D) , Micro Zoo. (Z_{sm}) $p_{Psm,D} = 0.30, p_{Plg,Zsm} = 1$	$T_{Lim} = 1.075$ $T_{Lim} F_{Lim} \frac{g_i p_i (P_i - P_{th})}{K_i + \Sigma p_i P_i}$ $T_{Lim} = 1.079^T$	$g_i = 0.75$ $K_i = 20.00$ $P_{th} = 0.001^D$	(0.080,0.153)	
BFM5.2; CMCC-ESM2	BFM5.2; CMCC-ESM2	Microzoo. (Z_{sm})	$\begin{aligned} & \text{Nanoflagellates} \left(P_{sm}\right), \text{ Diatoms} \left(P_{lg}\right), \\ & \text{Bacteria } (B), \text{ Micro Zoo. } (Z_{sm}) \\ & p_i = \phi_i \frac{P_i}{P_i + 1.67} \\ & \phi_{Psm} = 1, \phi_D = 0.01, \phi_{B,Zsm} = 0.2 \end{aligned}$	$\frac{g_i p_i P_i}{K_i + \Sigma p_i P_i}$ $T_{Lim} = 2^{(T-10)/10}$	${f g}_i = 3.00$ ${f K}_i = 1.67$	0.184 (0.122,0.253)	
		Mesozoo. (Z_{md})	$\begin{array}{c} \text{Diatoms } (P_{lg}), \text{Micro Zoo. } (Z_{sm}), \\ \text{Meso Zoo } (Z_{md}) \\ \text{p}_{Plg,Zmd} = 1, \text{p}_{Zsm} = 0.5 \end{array}$	$\frac{\mathbf{g}_i \mathbf{p}_i P_i}{\mathbf{K}_i + \Sigma \mathbf{p}_i P_i}$ $T_{Lim} = 2^{(T-10)/10}$	$g_i = 2.00$ $K_i = 6.66$ B		
		$\begin{array}{c} \text{Small} \\ \text{Zoo.} \\ (Z_{sm}) \end{array}$	Small Phyto. (P_{sm}) , Bacteria (B) $p_i = \frac{\phi_i(P_i - P_{th})}{\sqrt{\Sigma(\phi_i(P_i - P_{th}))^2}}$ $\phi_{Psm} = 1, \phi_B = 0.25$	$T_{Lim} \frac{g_i p_i (P_i - P_{th})}{K_i + \Sigma p_i (P_i - P_{th})}$ $T_{Lim} = e^{.063T}$	${f g}_i = 1.28$ ${f K}_i = 8.28$ ${f P}_{ m th} = 0.001$		
COBALTv2; GFDL-ESM4.1		$egin{aligned} \operatorname{Medium} \ \operatorname{Zoo}. \ (Z_{md}) \end{aligned}$	Large Phyto. (P_{tg}) , Diazatrophs (P_{dz}) , Small Zoo. (Z_{sm}) $p_i = \frac{\phi_i(P_i - P_{th})}{\sqrt{\Sigma(\phi_i(P_i - P_{th}))^2}}$ $\phi_i = 1$	$T_{Lim} \frac{\mathrm{g_i p_i}(P_i - \mathrm{P_{th}})}{\mathrm{K_i + \Sigma p_i}(P_i - \mathrm{P_{th}})}$ $T_{Lim} = e^{.063T}$	$egin{aligned} \mathbf{g}_i &= 0.57 \\ \mathbf{K}_i &= 8.28 \\ \mathbf{P}_{\mathrm{th}} &= 0.001 \end{aligned}$	0.105 (0.075,0.136)	
		Large Zoo. (Z_{lg})	Large Phyto. (P_{lg}) , Diazatrophs (P_{dz}) , Medium Zoo. (Z_{md}) $p_i = \frac{\phi_i(P_i - P_{th})}{\sqrt{\Sigma(\phi_i(P_i - P_{th}))^2}}$ $\phi_i = 1$	$T_{Lim} \frac{\mathbf{g_i} \mathbf{p_i} (P_i - \mathbf{P_{th}})}{\mathbf{K_i} + \Sigma \mathbf{p_i} (P_i - \mathbf{P_{th}})}$ $T_{Lim} = e^{.063T}$	$egin{aligned} \mathbf{g}_i &= 0.23 \\ \mathbf{K}_i &= 8.28 \\ \mathbf{P}_{\mathrm{th}} &= 0.001 \end{aligned}$		

Observed Median Plankton Community

Field	MAREDAT Group	Observed Global Median Prey Field						
Phytoplankton (mmolC m ⁻³)								
Small	Picophytoplankton	0.46						
Large	Diatoms + Phaeocystis	0.33						
Diazatrophs	Diazatrophs	2.5e-3						
Total	Pico+Diat +Phae+Diat	0.79						
Zooplankton (mmolC m ⁻³)								
Small	Microzooplankton	0.26						
Medium	Mesozooplankton	0.23						
Large	Macrozooplantkon	0.02						
Total	Micro+Meso+Macro	0.51						
Othe	Other Carbon Reservoirs (mmolC m ⁻³)							
Bacteria	Picoheterotrophs	0.55						
Detritus	-	2.65						
Temperature (°C)								
SST	-	15.30						

The PGI tells us how fast the average zooplankton in a given model would graze on the global median plankton community

...And varies by nearly 2 orders of magnitude!

Rohr et al. Communications Earth & Env (2023)

The PGI range across all surveyed CMIP6 models, is roughly as large as the middle 80% of all surveyed zooplankton species $(0.005-0.55 d^{-1})$,

... And greater than the range of observed Zooplankton functional Types

Rohr et al. Communications Earth & Env (2023)

Statistically, this means some BGC models assume an ocean filled with rapidly grazing ciliates, and others with slow grazing Larvae!

But, is that really fair?

The PGI reduces a highly multi-variate function into a single number.

And could be compensated for by zooplankton mortality rates

So doesn't it must miss a lot...?

Rohr et al. Communications Earth & Env (2023)

Grazing Pressure is best predicted by the PGI

...And Much Better than Biomass or Mortality

- Across models, differences in emergent grazing pressure appears mostly driven by differences in specific grazing rates, rather than zooplankton biomass or mortality
- So from phytoplankton perspective, what matters most is how fast individual zooplankton are grazing, not how many zooplankton there are or how fast they are dying.

So before running a single simulation, modeler should make sure they are prescribing a reasonable PGI

2.2 Emergent Properties

1. <u>Prescribed Properties</u>

Compare parameters and equations to empirical observations

e.g. K_{1/2}, g_{max}, <u>PGI</u>

Compare emergent properties of model output to observed properties

e.g. Zooplankton Biomass, <u>Grazing Pressure</u> **Model Code**

Zooplankton Biomass

Petrick et al. GBC (2022)

Statistical estimates of

zooplankton biomass

distributions can, and

models

should be used to tune

Zooplankton Biomass

Statistical estimates of zooplankton biomass distributions can, and should be used to tune models

But, isn't a strong driver of grazing pressure, so can't do the whole job without information about grazing rates

'Observed' Grazing Pressure

'Observed' Grazing Pressure

$$\frac{dP}{dt} = uP - mP - aP^2 - Entrainment - gZ$$

Optical backscattering + Empirical Relationship to phytoplankton biomass (Graff et al., 2015)

'Observed' Grazing Pressure

$$\frac{dP}{dt} = \mathbf{u}P - mP - aP^2 - Entrainment - gZ$$

Carbon-based Prod. Model f(C:Chl, SST, Nutrients)

$$\frac{dP}{dt} = uP - mP - aP^2 - Entrainment - gZ$$

	BGC Model;			
	Earth System Model	Phytoplankton Group	Non-Grazing Mortality Rate	Parameters
	iHAMOCC	Phy.	$(m_1 + m_2)P$	$m_1 = 0.004$
	NorESM2-LM	(P)		$m_2 = .004$
	CMOC; CanESM5	Phy	$mP + \alpha P^2$	m = .05
		(P)	$mr + \alpha r$	$\alpha = .015$
	WOMBAT; ACCESS ESM1.5	Phy.	$\mathrm{m}1.066^TP + \alpha P^2$	m = 0.04
		(P)		$\alpha = 0.038$
	OECO-v2; MIROC-ES2L	Small Phytoplankton	$\mathbf{m}P + \alpha P^2$	m = .05
		(P_{sm})		$\alpha = .0075$
		Large Phytoplankton	mP	m = .025
		(P_{lg}) Small Phytoplankton		m = .1
		(P_{sm})	$m1.7^{(T-30)/10}P + \alpha P^{1.75}$	$\alpha = .01$
	MARBL; CESM2	Diazatrophs	$m1.7^{(T-30)/10}P + \alpha P^{1.75}$	$\alpha = .01$ $m = .1$
		(P_{dz})		$\alpha = .01$
		Diatoms	$\text{m}1.7^{(T-30)/10}P + \alpha P^{1.75}$	m = .1
		(P_{lg})		$\alpha = .01$
	CanOE; CanESM5-CanOE	Small Phytoplankton	$mP + \alpha P^2$	m = .05
		(P_{sm})		$\alpha = .06$
		Large Phytoplankton (P_{lg})	$\mathbf{m}P + \alpha P^2$	m = .1
				$\alpha = .06$
	MEDUSA2.1; UKESM1-0-LL	Small Phytoplankton (P_{sm})	$\mathbf{m}_1P + \mathbf{m}_2\frac{P}{k+P}P$	$m_1 = .02$
				$m_2 = .1$
				k = .076
		Large Phytoplankton (P_{lg})	$m_1P+m_2\tfrac{P}{k+P}P$	$m_1 = .02$
				$m_2 = .1$
				k = .076

	BGC Model; Earth System Model	Phytoplankton Group	Non-Grazing Mortality Rate	Parameters
	PISCESv2; IPSL-CM6a-LR & CNRM-ESM2.1	Small Phytoplankton (P_{sm})	$\mathbf{m}_1 \frac{P}{k+P} P + \alpha P^2$	$m_1 = .01$ k = .2 $\alpha = .01$
		Large Phytoplankton (P_{lg})	$m_1 \tfrac{P}{k+P} P + \alpha P^2$	$m_1 = .01$ k = .2 $\alpha = .025$
	BFM5.2; CMCC-ESM2	Small Phytoplankton (P_{sm})	$m_1 \frac{P}{k+P} P + m_N P + rsp + exu$	$m_1 = NA$ $k = NA$ $m_N = f(nuts)$
		Large Phytoplankton (P_{lg})	$m_1 \frac{P}{k+P} P + m_N P + rsp + exu$	$m_1 = NA$ $k = NA$ $m_N = f(nuts)$
	COBALTv2 ^C ; GFDL-ESM4.1	Small Phytoplankton (P_{sm})	β NPP + m ₁ $e^{kT}P^2 + \alpha f(\mu)P^2$	$m_1 = .03$ k = .063
			$f(\mu) = (1 - max(1, \frac{\mu}{.25.*\mu_{max}}))^2$	$\alpha = .015$ $\beta = .13$
		Diazatrophs (P_{dz})	β NPP	$\beta = .13$
		Large Phytoplankton (P_{lg})	$\beta \text{NPP} + \alpha f(\mu) P^2$	$\alpha = .045$ $\beta = .13$
	Siegel et al. (2014)	Small Phytoplankton (P_{sm})	mP	m = .1
		Large Phytoplankton (P_{lg})	$mP + \beta NPP$	$m = .1$ $\beta = .01$

$$\frac{dP}{dt} = uP - mP - aP^2 - Entrainment - gZ$$

$$\frac{dP}{dt} = uP - mP - aP^2 - Entrainment - gZ$$

Algebra!
Grazing Pressure = gZ/P

$$\frac{dP}{dt} = uP - mP - aP^2 - Entrainment - gZ$$

2.3 Emergent Relationships

1. <u>Prescribed Properties</u>

Compare parameters and equations to empirical observations

e.g. K_{1/2}, g_{max}, <u>PGI</u>

Compare emergent properties of model output to observed properties

e.g. Zooplankton Biomass, Grazing Pressure

3. <u>Emergent Relationships</u>

Compare emergent relationships in model to observed relationships

e.g <u>Community-integrated</u> functional response

Model Code

Model Output

Model Diagnostics

Rohr et al. GRL (2024)

Rohr et al. GRL (2024)

Meyers et al. GBC (Under Review)

Yunzhe (Leo) Liu (PhD)

Putting It All Together In ACCESS

1. Prescribed Properties

Compare parameters and equations to empirical observations

e.g. K_{1/2}, g_{max}, <u>PGI</u>

2. Emergent Properties

Constraints

of

Tiers

Three

Compare emergent properties of model output to observed properties

e.g. Zooplankton Biomass, <u>Grazing Pressure</u>

3. <u>Emergent Relationships</u>

Compare emergent relationships in model to observed relationships

e.g <u>Community-integrated</u> <u>functional response</u>

Thank You and Questions

