Zooplankton Assemblages
Associated with Submarine
Canyons Off the East Coast of
South Africa

Presented by Njabulo Mdluli Email: methembemdluli@gmail.com

Contributors: Dr Jenny Huggett (DFFE), Prof Amanda Lombard (NMU), Dr Nicola Carrasco(UKZN) and Dr Shael Harris (UniZulu)















#### What are submarine canyons?



Source: J. Obelcz et. al., Deep-Sea Research II 104: 106-119 (2014)

### How do submarine canyons affect zooplankton communities?



Source: Allen and Hickey 2010. Journal of Geophysical Research: Oceans, Volume: 115, Issue: C8, First published: 19 August 2010, DOI: (10.1029/2009JC005731).

#### Research questions

Do submarine canyons support more zooplankton biomass, abundance and diversity compared to the adjacent non-canyon shelf?

What are some of the abiotic factors controlling the observed patterns?

### Study area

- The study is located within the iSimangaliso Marine Protected Area.
- Also, a UNESCO World Heritage site.



#### What else makes these canyons special?





## SAMPLE COLLECTION

Samples were collected in June 2018 and May 2019

A Bongo net (200 µm) was used to collect samples

A CTD was used to measure environmental variables



#### Abundance



A dissecting microscope was used to identify and count number of individuals

Abundance (ind m<sup>-3</sup>) = No. Individuals/volume seawater filtered (m<sup>3</sup>)

Fourth root transformed abundance data was used for multivariate analysis on PRIMER



#### Dried biomass

Dried zooplankton mass was obtained from the second Bongo net sample

Biomass (mg m<sup>-3</sup>) = Dried zooplankton mass (g)/ volume seawater filtered (m<sup>3</sup>)

ANOVA was used test for differences in biomass between canyon and non-canyon sites

# Environmental conditions in the canyons vs non-canyon sites: Temperature



#### Chlorophyll-a



# Did the zooplankton abundance differ between the canyons and non-canyon sites?



#### Some of the zooplankton that was abundant













#### "Rare species"







#### Community structure







PERMANOVA

Seafloor feature: p=0.19

Site: p<0.05

Site +Seafloor feature: p<0.05

PERMANOVA

Seafloor feature: p=0.39

Site: p<0.05

Site +Seafloor feature: p<0.05

#### Relationship between environmental variables and abundance: 2018



## Did the biomass differ between the canyon and non-canyon sites?





#### Summary

- There were no clear canyon effects on zooplankton biomass and abundance.
- The canyons have some effects on the environmental conditions.
- Patterns in abundance correlated with environmental variables.
- The dominance of small but diverse zooplankton is common in oligotrophic environments such as iSimangaliso.
- The study gives a brief insight into intricate functioning of these environments.
- Future long-term studies on zooplankton coupled with oceanography and geomorphology can help better understand the functioning of canyons in the pelagic zone.



### Thank you!























