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Mining the deep sea for metals

Modeled nodule abundance based on 61,583 data stations - McQuaid et 

al. 2020

➢ Manganese nodules contain cobalt, nickel, copper and manganese – all essential for battery 

production

Clarion Clipperton Zone is the mining target



Mining impacts in midwater?
Interaction of sediment plumes and oxygen minimum zones

Drazen et al. 2020

Animal distribution and behavior

Feeding ecology

Buoyancy

Clogging of respiratory/feeding structures

Release of metals, pollutants
Biogeochemical cycling and export

* Drazen et al., 2020; van der Grient & Drazen 2022; Stenvers et 
al. 2023



Zooplankton ecology in the ETP
Life is structured around oxygen gradients

• Biomass and community composition is structured by 
oxygen gradients 

• Biomass peaks in the upper well-oxygenated layer 
and in the lower oxycline (LO)

• Specialization of species to distinct oxygen 
habitats

• Epipelagic zooplankton biomass changes seasonally, 
and is correlated with chlorophyll, primary production, 
phosphate, and thermocline depth
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*Wishner et al. 1995, Saltman & Wishner 1997a, b, Wishner et al. 2013, 2018, & 2020; Fernández-Álamo & Färber-
Lorda 2006
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๏Characterize the abundance, biomass, diversity and composition of the 

zooplankton community from the sea surface to the seafloor

๏Characterize spatial and temporal variability in these assemblages

Establishing ecological baselines prior to impact:



๏Characterize the abundance, biomass, diversity and composition of 

the zooplankton community from the sea surface to the seafloor

๏Characterize spatial and temporal variability in these assemblages

Establishing ecological baselines prior to impact:



24

Oxygen profiles

Depth-stratified sampling around the OMZ

Preservation Reference Zone 

(PRZ)

Collector test mining area 

(CTA)

PRZ

24 Depth-stratified MOCNESS tows

Sampling 0-1500m, 9 Nets

2 cruises - Spring & Fall 2021

12 tows, 6 each at CTA and PRZ

CTD Sensors onboard

Study site, sampling, and analyses

CTA PRZ

upper 

oxycline
Upper OMZ

Mid OMZ

OMZ Core

lower oxycline

below OMZ

bathypelagic - 

UP

bathypelagic - LO
Sediment plume?



Depth-stratified sampling around the OMZ

Preservation Reference Zone 

(PRZ)

Collector test mining area 

(CTA)

24 Depth-stratified MOCNESS tows

Sampling 0-1500m, 9 Nets

2 cruises - Spring & Fall 2021

12 tows, 6 each at CTA and PRZ

CTD Sensors onboard

Study site, sampling, and analyses

DNA Metabarcoding

2 markers: mitochondrial COI, nuclear 18S V1-V2 *

28,731,977 total reads, all samples

35,786 average reads / sample COI; 44,371 average 

reads/sample 18S

Qiime2 with DADA2, & R decontam removal of contaminants

ZooScan image-based analyses

In progress

Biomass

Wet/dry weight biomass, 5 size fractions, each net

* universal primers; Leray et al. 2013, Geller et al. 2013, Fonseca et 
al. 2010



Coupled with higher primary production and particle export 

Zooplankton biomass is higher in spring

Higher biomass in spring (158±60 g/m2) 

than fall (81±20 g/m2)

PRZ CTA

Integrated biomass (0-1500 

m)

Data: A. White, S. Ferron, B.

Popp

Net Primary Production

April October

VGPM global-scale primary production model, from satellite-based ocean 

color

Spring

Fall

Particle Flux

Particle Interceptor Traps (PIT) 

deployed between 65 and 90m

0 ‘****’ 0.0001 ‘***’ 0.001 ‘**’0.01 ‘*’ 0.05 ‘ns’ 

1.0



Seasonality is particularly pronounced within the OMZ

Zooplankton biomass is higher in spring

Zooplankton Size Fractions
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Seasonality is particularly pronounced within the OMZ

Zooplankton biomass is higher in spring

๏ Upper 100m: strong seasonality in 

all size classes, except >5.0 mm
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Seasonality is particularly pronounced within the OMZ

Zooplankton biomass is higher in spring

๏ Upper 100m: strong seasonality in 

all size classes, except >5.0 mm

๏ OMZ: Strong seasonality in all size 

classes
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Seasonality is particularly pronounced within the OMZ

Zooplankton biomass is higher in spring

Zooplankton Size Fractions
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๏ Upper 100m: strong seasonality in 

all size classes, except >5.0 mm

๏ OMZ: Strong seasonality in all size 

classes

๏ Below the OMZ: significant but weak 

seasonality in all size classes, 

except >5.0 mm

0 ‘****’ 0.0001 ‘***’ 0.001 ‘**’0.01 ‘*’ 0.05 ‘ns’ 

1.0



Both depth and season are important

Community is highly structured 

18S: PERMANOVA, p<0.05 for Net + Season; Net R2 = 0.20, Cruise R2 = 

0.04

COI: PERMANOVA: p<0.05 for Net + Season, Net R2 = 0.11, Cruise R2 = 

0.05

Site CTA

Nuclear 18S

Bray-Curtis 

dissimilarity

Depth strata Season

Metabarcoding



How does community change seasonally?

Copepoda make up 50-85% of the community

Spring Fall
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How does community change seasonally?

Site PRZ

Nuclear 18S

Metabarcoding
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How does community change seasonally?

Site PRZ

Nuclear 18S

Metabarcoding

Spring Fall
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How does community change seasonally?

Site PRZ

Nuclear 18S

Metabarcoding

Spring Fall
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Community transition below the OMZ

Siphonophores, Fishes make up 55-65% of the 

community

Siphonophore

s
Fish



Life structured around oxygen gradients 

Upper OMZ is seasonally dynamic

Site PRZ

Nuclear 18S

Metabarcoding

Upper oxycline

Lower oxycline

}

}

OMZ core



Life structured around oxygen gradients 

Upper OMZ is seasonally dynamic Metabarcoding

}

OMZ core

{
Upper oxycline

Dynamic oxygen profiles at 100-300m in the upper OMZ likely drive 

seasonal variation in zooplankton community structure in this depth 

horizon

{



BUT highest richness is found in the deep mesopelagic and bathypelagic

Diversity is relatively constant across 
season 

Nuclear 18S

Chao2 estimated 

richness

Metabarcoding
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18S

Richness highest below 

the OMZ, in regions of the 

water column targeted for 

sediment release



Establishing ecological baselines prior to mining impact

Conclusions & Synthesis

Site CTA

Nuclear 18S

Chao2 estimated 

richness

Sample coverage: X-Y%, 

18S

๏ Seasonal forcing in the upper ocean drives zooplankton biomass response across 

the epi-, meso- and upper bathypelagic, with attenuation of the signal with depth. 

๏ Community is primarily structured by depth, but also varies across season, with a 

shift from crustaceans (spring) to pteropods and gelatinous plankton (fall) in the 

upper ocean.

๏ Upper OMZ a particularly dynamic region of the water column

๏ Adequate characterization of natural variability prior to anthropogenic impacts is 

required. Urgently need longer time series and greater spatial resolution

๏ Deep pelagic ocean holds the highest biodiversity and is not an attractive target 

location for sediment plume release

Implications for mining regulation
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