Zooplankton Ecological Baselines in the Eastern Tropical Pacific Amidst Deep-sea Mining Risks

Zooplankton Production Symposium, March 21, 2024

University of Hawaii at Mānoa, Dept. of Oceanography

Mining the deep sea for metals

Clarion Clipperton Zone is the mining target

Modeled nodule abundance based on 61,583 data stations - McQuaid et al. 2020

Manganese nodules contain cobalt, nickel, copper and manganese – all essential for battery production

Mining impacts in midwater?

Interaction of sediment plumes and oxygen minimum zones

Animal distribution and behavior
Feeding ecology
Buoyancy
Clogging of respiratory/feeding structures
Release of metals, pollutants
Biogeochemical cycling and export

^{*} Drazen et al., 2020; van der Grient & Drazen 2022; Stenvers et

Zooplankton ecology in the ETP

Life is structured around oxygen gradients

- Biomass and community composition is structured by oxygen gradients
 - Biomass peaks in the upper well-oxygenated layer and in the lower oxycline (LO)
 - Specialization of species to distinct oxygen habitats
- Epipelagic zooplankton biomass changes seasonally, and is correlated with chlorophyll, primary production, phosphate, and thermocline depth

^{*}Wishner et al. 1995, Saltman & Wishner 1997a, b, Wishner et al. 2013, 2018, & 2020; Fernández-Álamo & Färber-Lorda 2006

Establishing ecological baselines prior to impact:

- Characterize the abundance, biomass, diversity and composition of the zooplankton community from the sea surface to the seafloor
- Characterize spatial and temporal variability in these assemblages

Establishing ecological baselines prior to impact:

- Characterize the abundance, biomass, diversity and composition of the zooplankton community from the sea surface to the seafloor
- Characterize spatial and temporal variability in these assemblages

Study site, sampling, and analyses

Depth-stratified sampling around the OMZ

Sampling 0-1500m, 9 Nets 2 cruises - Spring & Fall 2021 12 tows, 6 each at CTA and PRZ CTD Sensors onboard

Oxygen profiles

Study site, sampling, and analyses

Depth-stratified sampling around the OMZ

24 Depth-stratified MOCNESS tows

Sampling 0-1500m, 9 Nets 2 cruises - Spring & Fall 2021 12 tows, 6 each at CTA and PRZ CTD Sensors onboard

Biomass

Wet/dry weight biomass, 5 size fractions, each net

DNA Metabarcoding

2 markers: mitochondrial COI, nuclear 18S V1-V2 * 28,731,977 total reads, all samples 35,786 average reads / sample COI; 44,371 average reads/sample 18S Qiime2 with DADA2, & R decontam removal of contaminants

ZooScan image-based analysesIn progress

^{*} universal primers; Leray et al. 2013, Geller et al. 2013, Fonseca et al. 2010

Coupled with higher primary production and particle export

Integrated biomass (0-1500

Higher biomass in spring (158±60 g/m²) than fall (81±20 g/m²)

0 '**** 0.0001 '*** 0.001 '** 0.01 '* 0.05 'ns' 1.0

Net Primary Production

VGPM global-scale primary production model, from satellite-based ocean color

Particle Flux

Particle Interceptor Traps (PIT) deployed between 65 and 90m

Data: A. White, S. Ferron, B. Popp

Seasonality is particularly pronounced within the OMZ

Zooplankton Size Fractions

Seasonality is particularly pronounced within the OMZ

Zooplankton Size Fractions

 Upper 100m: strong seasonality in all size classes, except >5.0 mm

0 '****' 0.0001 '***' 0.001 '**' 0.01 '*' 0.05 'ns'

Seasonality is particularly pronounced within the OMZ

Zooplankton Size Fractions

Upper 100m: strong seasonality in all size classes, except >5.0 mm

OMZ: Strong seasonality in all size classes

Seasonality is particularly pronounced within the OMZ

Zooplankton Size Fractions

- Upper 100m: strong seasonality in all size classes, except >5.0 mm
- OMZ: Strong seasonality in all size classes

Below the OMZ: significant but weak seasonality in all size classes, except >5.0 mm

) '***' 0.0001 '**' 0.001 '*'' 0.05 'ns'

Community is highly structured

Both depth and season are important

Site CTA Nuclear 18S Bray-Curtis dissimilarity

18S: PERMANOVA, p<0.05 for Net + Season; Net $R^2 = 0.20$, Cruise $R^2 = 0.20$

0.04

COI: PERMANOVA: p<0.05 for Net + Season, Net $R^2 = 0.11$, Cruise $R^2 = 0.11$

~ ~ -

Upper OMZ is seasonally dynamic

Life structured around oxygen gradients

Nemertea

Scyphozoa

Other

Ostracoda

Polychaeta
Thaliacea

Upper OMZ is seasonally dynamic

horizon

Life structured around oxygen gradients

Scyphozoa

Thaliacea

Diversity is relatively constant across

Metabarcoding

SFRISH richness is found in the deep mesopelagic and bathypelagic

Conclusions & Synthesis

Establishing ecological baselines prior to mining impact

- Seasonal forcing in the upper ocean drives zooplankton biomass response across the epi-, meso- and upper bathypelagic, with attenuation of the signal with depth.
- Community is primarily structured by depth, but also varies across season, with a shift from crustaceans (spring) to pteropods and gelatinous plankton (fall) in the upper ocean.
- Upper OMZ a particularly dynamic region of the water column

Implications for mining regulation

- Adequate characterization of natural variability prior to anthropogenic impacts is required. Urgently need longer time series and greater spatial resolution
- Deep pelagic ocean holds the highest biodiversity and is not an attractive target location for sediment plume release

Acknowledgements

- Field Assistance: Mike Dowd, Sophia Hanscom, Nicolas Storie, Alex MacLeod, Chantal Rodriguez, Jesse van der Grient, & Jessica Perelman
- Laboratory Assistance: Jolie Tosten, Kelsey McBeain, & Michael Yamada
- Project Funding: NSF GRFP Fellowship; The Metals Company

