

Searching for environmentally safer plastic additives using zooplankton as toxicity models

Antonio Paule*, Anna Cunill and Rodrigo Almeda

*antonio.paule@ulpgc.es

Modify the characteristics of the final product

Enhancing properties

Physically

Chemically **

Biologically

Introduction ✓ Plastic additives

Introduction ✓ Plastic additives categories

Introduction ✓ Plastic additives lixiviation

Objetives

Toxicity assesment of 5 **conventional** additives

Analysis of the toxicity of 5 **alternative** additives

Methods ■ Reactives

Conventional additives and alternatives chosen

Strategies followed:

- 1. Sulfonic acid addition
- 2. Carbon chain shortening
- 3. Use of a different molecule

Function	Conventional additive	Alternative additive
Flame retardant	TBBPA	TCEP
	Br Br OH CH ₃ CH ₃ CH ₃	CI CI CI
UV filter	BP-3	BP-5
	OH O	OH OO
Non-stick coating	PFOA	PFBA
	F F F F F F F F	F ₃ C OH
Antioxidant	BPA	BPS
	но	но
Plasticizer	DEHP	ATEC
	O CH ₃ CH ₃ CH ₃	H ₃ C OH ₃

Methods Experimental organisms

1. Arbacia lixula

Collection

Melenara's Pier, Gran Canaria, Canary Islands, Spain

Inyection with 0.5M of KCI into the coleom

¡No sexual dimorphism!

Methods Experimental organisms

2. Acartia tonsa

Exposure to additives

1 adult / ml

Five [additive]

Five [additive]

Methods ■ Data analysis

% Growth Inhibition (GI) = 100 - $\frac{(final\ length-eggs\ length)\ x\ 100}{Control\ length-eggs\ length}$

% Mortality (M) = 100 - $\frac{Number\ of\ Alive\ copepod\ x\ 100}{Number\ of\ aife\ copepod\ +\ number\ of\ dead\ copepod}$

Results and discusion

Sea urchin embryos

Copepod adults

Conventional additive

Alternative additive

TCEP

TBBPA

PFOA

BPA

DEHP

BP-3

BP-5

PFBA

Flame retardant

TBBPA

TCEP

 $EC_{50} = 0.12 \text{ mg/L}$

BPA

ATEC

BP-3

BP-5

PFBA

BPA

BPS

ATEC

DEHP

Flame retardant

TBBPA

TCEP

Conventional additive

Alternative additive

TBBPA

TCEP

BP-3

BP-5

UV filter

BP-3

Conventional

BP-5

Alternative 👣

PFBA

DEHP

ATEC

UV filter

100 -

40

20 -

0,0001

0,001

Mortality (%)

Conventional

100 -

80 -

60 -

40 -

20 -

0,0001

100

Concentration (mg/L)

BP-3

LC₅₀ > 100 mg/L

Non-stick PFOA PFBA

Concentration (mg/L)

LC50 > 1000 mg/L

TBBPA

BP-3

BP-5

PFOA

PFBA

BPA

BPS

DEHP

O CH₃ CH₄

ATEC

Antioxidant

BPA

BPS

Plasticizer

DEHP

ATEC

Conventional additive

Alternative additive

TBBPA

TCEP

BP-3

BP-5

PFOA

PFBA

BPA

BPS

DEHP

Plasticizer

DEHP

ATEC

Conventional additive

Alternative additive

TBBPA

BP-3

PFOA

BPA

BPS

DEHP

ATEC

Results and discussion

Comparison between the EC₅₀ (mg/L) and their standard deviations for all the plastic additives at 48h exposure in *Arbacia lixula* embryos (A) and *Acartia tonsa* adults (B), in a toxicity scale proposed by Passino & Smith (1987) for ranking hazards.

Results and discussion

Comparison between the EC₅₀ (mg/L) and their standard deviations for all the plastic additives at 48h exposure in *Arbacia lixula* embryos (A) and *Acartia tonsa* adults (B), in a toxicity scale proposed by Passino & Smith (1987) for ranking hazards.

BP-3 (Benzophenone 3)

 $EC_{50} = 2.4 \text{ mg/L}$

 $LC_{50} = 1.7 \text{ mg/L}$

(Teoh et al., 2020)

Conclusions

Conventional additive

Alternative additive

- **TBBPA**

BP-3

DEHP

 4 out of 5 alternative additives showed less toxicity than the conventionals

• Sea urchin embryos were more sensitive to additives than copepod adults

TBBPA was **the most toxic** additive

• BP-3 has a great **ecological risk**

Acknowledgemnts

Thank you very much for your attention!