

The diversity and power of plankton indicators for assessing ecosystem state and trends

Frank Coman, Claire Davies, Ruth Eriksen, Jason Everett, Felicity McEnnulty, Julian Uribe-Palomino, Wayne Rochester, Anita Slotwinski, Mark Tonks, Anthony J Richardson

7th Zooplankton Production Symposium: Thursday March 21st 2024

Plankton Data

• IMOS Australian Continuous Plankton Recorder survey

IMOS National Reference Stations BGC sampling

• 2009 to present

Historical data sets

Integrated Marine Observing System (IMOS) plankton data, 2007-2024

Continuous Plankton Recorder

- Robust design
- Ships of Opportunity and Research vessels
- Large spatial scale: 400-450 nautical miles
- 8-10 m depth
- Seasonal

Integrated Marine Observing System (IMOS) plankton data, 2007-2024

National Reference station

- Small research vessels
- Zooplankton: vertical drop net
- Phytoplankton: Niskin bottle samples
- Whole of water column
- Monthly
- 7 sites around Australia

Plankton measurements

- Phytoplankton:
 - AusCPR: microscope counts and colour index
 - NRS: microscope counts
- Zooplankton:
 - AusCPR and NRS: microscope counts
- Biomass:
 - AusCPR and NRS: total plankton biomass

Plankton Indicators

- 1. Community temperature index
- 2. EAC current strength index
- 3. Ocean Acidification index

- Plankton as indicator species
 - Few are commercially exploited
 - Small, short lived
 - Extremely sensitive to environment

1. Community Temperature index

- Commonly applied to bird and insect communities
- Species level IDs and abundance
- Temperature preference for individual species
 - e.g. northern hemisphere: Calanus finmarchicus and Calanus helgolandicus

Warming at long-term stations

Port Hacking - warm temperate

Depth

Maria Island - cool temperate

1. Community temperature index: copepods

Port Hacking – warm temperate

Adjusting model for seasonal cycle gives a better estimate of period effect

1. Community temperature index: copepods

Maria Island – Cool Temperate

Yongala - Tropical

1. Community temperature index: phytoplankton

Port Hacking – warm temperate

Global Warming Impacts Micro-Phytoplankton at a Long-Term Pacific Ocean Coastal Station

Penny A. Ajani, Claire H. Davies, Ruth S. Eriksen, Anthony J. Richardson (2020)

Frontiers in Marine Science

2. EAC Strength Index

- Rationale of index:
 expectation that warm
 water species will
 penetrate further south
 as current strengthens
- Difficult to directly measure current strength along whole EAC

2. EAC Strength Index

univariate warmth index

 \Rightarrow

GAM to remove latitude effect before calculating regional average

3. Ocean Acidification Index

Advantages of IMOS Plankton Data streams

- Long-term
- Repeated
- High level of taxonomic discrimination; often species
- Direct counts
- Data freely available from AODN

Alternative methodologies

- eDNA / metabarcoding
 - Difficult to determine abundances
 - Species with much external DNA e.g. coral mucous
 - Long-lived plankton species which grow orders of magnitude in size
 - Species level resolution difficult due incomplete gene libraries
- Machine Learning
 - Require reliable reference libraries
 - Difficult to get species level resolution
- Applicability to indices
 - Taxonomic discrimination and abundances required for CTI and EAC current
 - Lower taxonomic resolution for calcifiers index

Thank you

Plankton indicators for ecosystem assessments

Frank Coman, Claire Davies, Ruth Eriksen, Jason Everett, Felicity McEnnulty, Julian Uribe-Palomino, Wayne Rochester, Anita Slotwinski, Mark Tonks, Anthony J Richardson

ZPS7 March 21st 2024

Collaborators: Research: IMOS, CSIRO, AAD, AIMS, SARDI, NSW Dept. Env, Shipping: Wallenius Whilhelmsen, Rio Tinto, Sealord, ANL, Swires, Laeisz

