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From species occurrences to niche modelling
and biogeographical distributions

Modeled distribution

Current conditions
Ecological niche "

A

Temperature Species Bathymetry
suitability observations suitability

Species
observatons

N
\

\/

l
probability
|

Variaplg ; \Iaﬁab\e’l

Future conditions
(IPCC)

Environmental
variables

Suitable Habitat



From species occurrences to niche modelling
and biogeographical distributions

- - Modeled distribution

Current conditions

Ecological niche

A\

Temperature Species Bathymetry
suitability observations suitability

N
\

Species
observatons

|
probability
|

Projected distribution \/

"anébfe 1 \Ia‘\a'()\e?’

variables

Level of warming/periods

Environmental

Level of warming/periods

Level of warming/periods Suitable Habitat

Level of warming/periods



From species occurrences to niche modelling
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The major uncertain steps in the construction o e
of Species Distribution Model "
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The major uncertain steps in the construction
of Species Distribution Model

‘target taxa

:Modelling at,
‘above or

level

Define
research
guestions

target
-ecosystems

‘Spatial and
‘temporal
‘projections
‘(e.g. climate
‘change
‘scenarios)

: Applicability to

‘below species

: Specificities of :

o
o

o

T

»

Distribution data

‘Cleaning and 0

corrections

:Absences or
‘background/ _
‘pseudoabsences

:Spatial and
‘temporal extent

Environmental data

:Pre-selection of
‘relevant
‘predictors

: Spatial resolution, : 0

:extent, scale

:Temporal range
:and bias due to
‘anthropogenic
:changes

:Scenarios and
‘circulation models

Degree of confidence in decision-making :

Aspect which will
require one or
several decisions to
make

© Well established

o Established but incomplete
guidelines exist, confidence will
vary depending on study features

Limited due to the
incompleteness of
guidelines

© unresolved

g

‘pseudoabsences

‘Background or o

‘ Statistical

‘selection of e

-predictors

:Algorithm choice
:Model :
:parameterisation

:Ensemble :
:modelling : o
‘Hierarchical

‘models : Q

‘Response to
:predictors

Eéhéﬁélw essssecesssss
‘autocorrelation
‘Inclusion of biotic
:or dispersal
:effects

Leroy et al. 2023

5. Model evaluation

-Evaluation
‘procedure

:Performance
:metrics

‘Biological realism :
‘of response
‘curves and
-spatial/temporal
:projections

6. Projections and
interpretation

‘Mapping: extent,
‘resolution : 0

‘Post-processing, o

‘Uncertainty o

‘assessment

Interpretation of o
:model outputs

Global Ecology and Biogeography, (Globa! Ecol. Siogeogr) (2008) 17, 145-151

ECOLOGICAL
SOUNDING

AUC: a misleading measure of the
performance of predictive distribution
models

Jorge M. Lobo™, Alberto Jiménez-Valverde! and Raimundo Real?

witey IR

Without quality presence-absence data, discrimination
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And much more...
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How can long-term time series
be used for the evaluation
of niche modelling?
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Using long-term time series to model species distribution !\%1 Biological
Calanus finmarchicus, “The Rolls Royce of zooplankton®©” '{’(-?

!1, ’g Observations ﬁneralized linear model Ugg\;fo Random Forest
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13 environmental parameters reflecting monthly thermohaline conditions,
primary production, stratification, oceanic/atmospheric circulation, from 1958 onwards

©Hélaouét (pers. Comm.)



Using long-term time series to model species distribution
Calanus finmarchicus, “The Rolls Royce of zooplankton®©”

!l ’g Observations Generalized linear model (gg\) Random Forest
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Using long-term time series to model species distribution
Calanus finmarchicus, “The Rolls Royce of zooplankton®©”
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Assessing the robustness of models using

classical evaluation metrics
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Assessing the robustness of models using
long-term time series ... Reconstructing the past for a better evaluation...
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Assessing the robustness of models using
long-term time series ... Reconstructing the past for a better evaluation...

(_( Observations ) N (Generalized linear modelk /—( Random Forest H

20

PC1 (12% var. explained) [ PC1 (16% var. explained)

PC1 (13% var. explained)

1
S <+ oo oo ol W O = ool O © = o ol WL
—_— = = v N N~~~ e oo O
S o O [= S - - e N~ S e e e = S R
S S I o IS

958
962
966
970
974
978
982 F
986
990
994
998
2002
2006
2010
2014 F
2018
958
962
966
970
974
978
982 F
986
990
994
998
2002
2006

i i s i i i e =

2010
2014 F
2018




Take home message
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“... All models are wrong, but some are useful ...

George Box ... a sentence overly used in modelers' presentations during conferences...

.. The practical question is, how wrong do they have to be to not be useful ...

One way to test a model's forecasting capacity is to assess its accuracy
through hindcasting ... relying more heavily on historical time series

To take into account data from past ecosystem

Si.

= To implement additional algorithms to explore their sensitivity
‘l = To consider the weight of abundances, not just presence/absence
= To broaden the spectrum of species
L 1 P P
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