

EAT

PREY

Can **functional traits** provide insight into **bottom-up** vs **top-down** forcing and long-term **distribution** patterns of **copepods** on the **Agulhas Bank**?

Jenny Huggett
Tarron Lamont
Janet Coetzee

Jacob Carstensen
Hans Jakobsen
Eva Friis Moller

The Agulhas Bank – influenced by 3 oceans

Agulhas Current = strongest WBC

The Agulhas Bank – circulation patterns

Calanus & the cold ridge

- Seasonal, subsurface ridge of cool, upwelled water
- Calanus agulhensis concentrated on Agulhas Bank
- Centre of distribution associated with the cold ridge*

*<17°C water at 30 m

- Higher Chl a -> enhanced copepod production
- Cyclonic flow around ridge -> enhanced retention

MODIS Aqua, 12 December 2018 © NASA Worldview.

Kirkman et al. (2016) Afr. J. Mar Sci 38: 7-22.

Huggett & Richardson (2000) *ICES J mar Sci.* **57:** 1834–1849 [after Peterson et al., 1992; Largier et al., 1992]

Env changes / ecosystem shifts on Agulhas Bank

Abrupt environmental shift associated with changes in the distribution of Cape anchovy *Engraulis encrasicolus* spawners in the southern Benguela

C Roy^{1*}, CD van der Lingen^{2,3}, JC Coetzee² and JRE Lutjeharms⁴

Broadening not strengthening of the Agulhas Current since the early 1990s

Lisa M. Beal¹ & Shane Elipot¹

Long-term decline in Calanus agulhensis (1988-2011)

What about the other copepod species?

Distribution patterns & long-term variability?

Linear trend in Reynolds SST (°C per decade; 1982-2012)

Rouault et al. 2010; Blamey et al. 2015

Cooling inshore Warming offshore

Sampling & data processing

- Annual pelagic fish surveys in ~November (late spring) from 1988-2011 (24 years)
- Vertical Bongo net (200 μm-mesh) hauls in upper 200 m (focus on copepods)
- GAMs (Generalised Additive Models) -> mean spatial distributions
- Ordinary Kriging analysis of residuals -> distribution maps for individual years
- Environmental data in situ temperature & fluorescence (vertical profiles)

In situ data confirms cold ridge-driven production

Mean distribution patterns – all copepods

- Concentrated along 100 m isobath (EAB)
- Further offshore W of Mossel Bay (CAB)
- Follows flow path over outer shelf (WAB)

Areas of greatest abundance and biomass overlapped broadly with the region of elevated chl *a* at 30 m depth

- Similar to abundance, most concentrated beyond 100 m
- Peak biomass near southern tip of AB

Dominant taxa* show varying spatial patterns

Centre of gravity of upper 10% of highest biomass values for the dominant copepod taxa during November-December 1988 to 2011 (each dot represents one survey)

* These 8 taxa together comprise 98% total copepod abundance & **94% total copepod biomass**

Huggett et al. (2023) – Deep-Sea Res 208: 105265. [% total copepod biomass]

Dominant taxa show varying interannual variability

Significant* decline in total copepod biomass

(Whether 1988 is included or excluded)

Bottom-up or top-down control of copepods?

Top-down forcing – clear relationships

High interannual variability but significant negative relationships between pelagic fish and copepod biomass

Bottom-up forcing

In situ: No trends in temperature or the area or volume of coastal upwelling or cold ridge over the TS (Oct/Nov/Dec 1988-2011)

Temp (SST/30m/17°C) Upwelling (Coastal/CR) (Area/Vol)

spring / summer

In situ: significant increase in mean chl a at 30 m over TS

spring / summer

(Not Surf/Integ)

It's complicated!

Remotely-sensed data:

- (1) long-term warming trend for the Agulhas Current system over the past 3-4 decades (Roualt et al., 2010; Blamey et al., 2015; Sweijd and Smit, 2020), particularly along the Agulhas Bank shelf edge.
- (2) Significant increase in cumulative upwelling & no. upwelling days per year for **Agulhas Bank** (1979-2012; Lamont et al. 2018)

(3) Increase in Chla & microphytoplankton in summer for AB shelf but decreases in other seasons (1997-2018; Lamont et al. 2018).

in satellite-derived **NPP rates** on the **Agulhas Bank** (1998– **2018**; Mazwane et al. 2022)

Functional traits / groups – summarise patterns?

- Main characteristics impacting fitness & link to carbon cycling
- Classified according to ecological function
- Allocate copepods to groups with distinct ecological roles

EAT -> Trophic group

EAT -> Feeding type

PREY -> Myelination

LOVE -> Reproductive mode

1. Myelinated, current-feeding herbivores

FG 6 & 7 Benedetti et al. (2022)

2. Amyelinated, current / ambush-feeding omnivores

3. Amyelinated, current / cruise-feeding detritivores

FG 2 & 3 Benedetti et al. (2022)

To be continued... new analysis using functional trait approach

- Spatial (WAB, CAB, EAB) & temporal (1988-2011)
 - Environment: remotely-sensed SST, Chla, Chl size
 - Copepod FTs: Feeding mode, Myelination, Reproductive strategy
 - Predation: Anchovy, Sardine, Redeye biomass

eat prey love

Predation: pelagic fish biomass

SIZE -> Total length

Decline in mean copepod body length

Decline in *C. agulhensis* (prop. biomass)

Conclusions (so far – work in progress...)

- Significant decline in total copepod biomass (*C. agulhensis* + small calanoids)
- Signicant decline in mean copepod length
- No long-term trends observed for other taxa
- No clear / consistent environmental links
- Decline mainly a consequence of top-down control by pelagic fish
- A shift towards smaller zooplankton is likely to be reinforced by ocean warming, with negative consequences for fisheries production as well as carbon sequestration.

Acknowledgements

Ministry of Higher

Denmark

- ICES/PICES & symposium organisers
- SCOR
- Past collaborators: Margaux Noyon, Jacob Carstensen, David Walker →

Current co-conspirators:

Tarron Lamont, Janet Coetzee Dept. Forestry, Fisheries & the **Environment (DFFE)**

Jacob Carstensen, Hans Jakobsen, Eva Friis-Møller Dept. Ecoscience, Aarhus University, Denmark **ZOOLOGIC:** Danish Agency for Higher Education and Science

