The role of transport and environmental variability influencing the spatiotemporal patterns of zooplankton in the Northern California Current, USA

Jennifer L. Fisher¹, Cheryl A. Morgan², Christopher A. Edwards³, J. Wilson White¹

¹Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, USA ²Cooperative Institute for Marine Resources and Ecosystem Studies, Oregon State University, USA ³Department of Ocean Sciences, Institute of Marine Sciences, University of California Santa Cruz, USA

Meroplankton

Pelagic for weeks to months

Need to return to habitat favorable for survival

Important food source for higher trophic levels

Holoplankton

Pelagic for months to years

Need to reproduce in the pelagic environment

Important food source for higher trophic levels

Meroplankton

Pelagic weeks to months

Need to settle in suitable habitat

Holoplankton

Pelagic months to years

Need to reproduce

Biophysical processes contributing to spatiotemporal variability

Adult production → food resources

Transport → source location, dispersal, retention, settlement

Environment → suitable for survival

temperature

Is there a suite of biophysical processes that best explains the spatiotemporal variation in mero- and holoplankton?

- Transport
- Environment

- Barnacle larvae
- pteropod Limacina helicina

itat on ification

Methods-Juvenile Salmon Ocean Ecosystem Survey (JSOES)

Biological sampling

- June 1998 2022 (24 years)
- 60 cm 335-um oblique bongo
- All samples collected during the day

Cheryl Morgan OSU-CIMERS

Environmental data

- Co-located water column data (T, S, Oxy) and surface chlorophyll
- Aragonite saturation derived from T, Oxy (Juranek et al. 2009)

Spatiotemporal modelling

- sdmTMB (R package- Anderson et al. 2024)
- Environmental covariates
 - Upper 20m temperature
 - Extracted Chlorophyll-a
 - % of the water column undersaturated for aragonite
- Tweedie distribution

Barnacle nauplii

- Adults inhabit rocky shoreline
- PLD ~weeks to 1 month

Limacina helicina

• Life span ~1 year

Limacina_all Limacina helicina Life span ~1 year Does source water variation affect species abundance and distribution? Longitude

ROMS and particle tracking

ROMS model

- 2.5 to 3.7 km spatial resolution
- 42 vertical levels
- domain 30°N 48°N (northern WA)

- 60 stations
- 50 floats released at each station daily from July 10 (mean plankton sampling date June 20)
- Tracked backwards 120 days
- 6 vertical migration patterns
 - Passive
 - 5m- in the surface boundary layer
 - 12m- below the surface boundary layer
 - 30m-below the surface boundary layer
 - DVM- 5 30m
 - DVM-5-100m

Float tracers tracked backwards in time 90 days

2008 Cold year

Source water location 15 days prior to sampling

2005 warm year

Weaker alongshore flow inshore

2008 cold year

Stronger alongshore flow at all stations

Limacina helicina

Longitude

Barnacle nauplii

Density ~ 1 + depth + chl

Environment or adult reproduction?

Common patterns across other taxa?

Brinton 2000

- Adults inhabit intertidal cobble fields
- PLD ~1.5 months

Euphausia pacifica		
calyptopis	density ~ 1	
furcilia	density ~ 1 + depth + temp + chlorophyll	more offshore, cooler temps, less chl
Thysanoessa spinifera		
calyptopis	density ~ 1	
furcilia	density ~ 1 + depth + temp	more nearshore, cooler temps

Porcellanidae		
Zoeae I	density ~ 1 + depth	more nearshore
Zoeae II	density ~ 1 + depth + temp + chlorophyll	warmer temps, more chl
Megalopae	density ~ 1 + depth + temp + chlorophyll	warmer temps, more chl

Summary

- It's complicated!!
- Transport didn't appear to play a strong role, but it might be more important if we track floats back longer than 15 days
- Environmental factors were more important for taxa that had been in the pelagic environment longer
 - Limacina helicina
 - Krill furcilia (2 species)
 - Porcellanid zoeae II and megalopae
- Difficult to infer mechanism with only annually resolved data
- A more sophisticated modeling technique that incorporates stage based survival could help ellucidate what environmental drivers are explaining these complex spatiotemporal patterns?
 - David Green S16- KRILLPODYM

Next steps:

Run similar analysis for all 24 years using ROMS with larger domain

Andrew Scherer PhD candidate CEOAS Advisor: Melanie Fewings

Develop user-friendly GUI to track particles

- Investigate whether vertical migration behaviors affect source water location
- Add additional covariates to the SDM modelling
 - Alongshore flow
 - Proximity to estuaries

Thanks for listening!

Acknowledgements

Colleagues:

- Sam Zeman
- Anna Bolm

Committee members:

- Will White (major advisor)
- Melanie Fewings
- Kim Bernard
- Jessica Miller

Coding and sampling:

- Brian Burke
- Captain, crew, and scientists of the R/V Frosti