Synoptic variability of wintertime wind-driven circulation in the Bohai, Yellow and East China Seas

Daji Huang
Second Institute of Oceanography, SOA, China
Nov. 9, 2016, San Diego
1. Background
2. Data and methods
3. Results
4. Summary
1. Background

Bathymetry of the BYECS

Multi-years wintertime (DJF) mean and STD of wind stress from 3 h ECMWF wind data
Seasonal Circulation in winter

Huang et al., 2005, GRL
Guo et al., 2006, JPO
Lin et al., 2011, JGR
Synoptic variation of SSH and Wind

Hsueh and Romea, 1983, JPO
Synoptic variation of Current and Wind

Hsueh, 1988, JGR
Synoptic variation of SSH, Current and Wind

Huang, D., et al, 2016, *DSR II*
Observed synoptic currents in 2014
Objective

Because of the limitation of spatial resolution and coverage of the observed data, the basin wide spatial and temporal characteristics and the associated dynamical processes of the BYECS in response to synoptic wind are not fully recognized.

First, from the point of view of kinematics, what are the overall characteristics of the SSHA and current in the BYECS in response to strong synoptic wind in winter?

Second, from the point of view of dynamics, how do the SSHA and current in the BYECS response to the wind, namely what is the relationship between wind, SSH and current?
2. Data and methods

• **MITgcm**
  - Resolution: 1/20 $\times$ 1/20 Deg & 36 levels
  - Topography: Choi (2001)

• **Open Boundary Condition**
  - Daily temperature, salinity and velocity obtained from HYCOM results

• **Surface Boundary Condition**
  - Net heat flux and net fresh water flux from ECMWF (3 h)
  - Surface wind speed from ECMWF (3 h)
  - Data assimilation (daily SST from REMSS and SSS from HYCOM)

• **Simulated from Dec. 1, 2013 to Mar. 1, 2014, 3 h outputs**
Simulated wintertime mean of SSH and current
Model Validation

Comparison between observed and simulated depth-averaged current at M1 and M2
3. Results – Band passed

Power spectra of wind stress, SSHA and depth-averaged current at M1 and M2
Mean and STD of wind stress and simulated SSHA and depth-averaged current

\[ \tau, \eta, \overrightarrow{v} \]

mean

STD
Complex EOF

\[ \zeta(x, t) = \sum_{n} A_n(t) \cdot B_n^*(x) \]

- \( A_n(t) \): complex principal components
- \( B_n(x) \): complex spatial patterns
Two leading CEOFs (61.6%, 23.1%) of wind stress
STD of SSHA (left, cm) and current (right, cm/s)
Two leading HEOFs (83.4%, 12.5%) of SSHA
Interpretation of two leading HEOFs of SSHA

MODE-1

MODE-2
Two leading CEOFs (30.4%, 23.3%) of current reversing current
Correlation between wind SSHA and current

<table>
<thead>
<tr>
<th></th>
<th>$(u, v)_1$</th>
<th>$(u, v)_2$</th>
<th>Predominant geostrophic balance between HEOF1 and CEOF2 and between HEOF2 and CEOF1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\eta_1$</td>
<td>0.26</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>$\eta_2$</td>
<td>0.82</td>
<td>0.46</td>
<td></td>
</tr>
</tbody>
</table>
Correlation between wind stress and SSHA, current

<table>
<thead>
<tr>
<th></th>
<th>$\eta_1$</th>
<th>$\eta_2$</th>
<th>$(u, v)_1$</th>
<th>$(u, v)_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau_1$</td>
<td>0.27, 7h</td>
<td>0.53, 5h</td>
<td>0.84, 0h</td>
<td>-0.20, 6h</td>
</tr>
<tr>
<td>$\tau_2$</td>
<td>0.35, 3h</td>
<td>0.70, 0h</td>
<td>-0.69, 6h</td>
<td>-0.36, 3h</td>
</tr>
</tbody>
</table>

HEOF2 and CEOF1 are strongly correlated with stress.
Dynamic balance: in minor axis direction

\[ u_t + uu_x + vu_y - f v = -g \eta_x + \frac{\tau_s^x}{h \rho} - \frac{\tau_b^x}{h \rho} \]

unit: $10^{-6} \text{ms}^{-2}$

Geostrophic Balance
Dynamic balance: in major axis direction

\[ v_t + uv_x + vv_y + fu = -g\eta_y + \frac{\tau_s^y}{h\rho} - \frac{\tau_b^y}{h\rho} \]

Tendency
Coriolis Force
Pressure Gradient
Wind Stress
Non-linear
Bottom Friction

unit: \(10^{-6} \text{ms}^{-2}\)
Reconstructed SSHA and associated geostrophic currents from HEOF-1

\[ \Delta t = 9h \approx \frac{1}{8}T \]
Reconstructed SSHA and associated geostrophic currents from HEOF-2

\[ \Delta t = 9h \approx \frac{1}{8} T \]
Simulated SSHA and current anomaly

$\Delta t = 18h 
\approx \frac{1}{4} T$
Reconstructed SSHA and associated geostrophic currents from two HEOFs

\[ \Delta t = 18 \, h \approx \frac{1}{\frac{T}{4}} \]
Residual SSHA and currents after two HEOFs and associated geostrophic currents

\[ \Delta t = 18\text{h} \approx \frac{1}{4} T \]
4. Summary

The response of SSHA and current to wind shows much stronger synoptic variability than their means.

The synoptic variation of SSHA is reflected by two leading coastal trapped waves with one and three nodes, respectively.

The current is closely associated with SSH via geostrophic balance and is accelerated by wind stress and pressure gradient.
Thank You for Your Attention!