The influence of climate on the biodiversity and community structure of fishes in the southern California Current System, 1969 – 2011

Tony Koslow, Helena McMonagle, and William Watson

Scripps Institution of Oceanography
University of California, S.D., La Jolla, CA USA
Southwest Fisheries Science Center, NOAA Fisheries, La Jolla, CA

PICES Conference, San Diego USA, November 2016
Overview of talk

- Review of past work showing significant, coherent changes in abundance across broad groups of fish taxa and relationships with ocean forcing
- Examine how these trends in regional fish communities may have affected biodiversity: species richness and evenness/community dominance structure
The CalCOFI ichthyoplankton time series is used to assess changes to adult fish populations in the California Current Ecosystem

- **CalCOFI ichthyoplankton time series, 1951-2010**
 - Monthly/quarterly sampling
 - CTD casts to 500 m: T, S, nutrients, O$_2$, chl, O$_2$
 - Oblique net tows to 210 m depth, fish eggs/larvae removed, identified, enumerated (~500 taxa)

![Graph](image)

Sardine (Hill et al. 2010)

Larvae sampled primarily at prefexion stage. Their abundance is correlated with adult abundance from stock assessments.

Anchovy (Methot 1989)

Relationships between ichthyoplankton and stock biomass also noted for California halibut & rockfishes.
PCA indicates significant environmental impacts across broad fish communities (Koslow et al 2011)

86 taxa consistently sampled, 1951-2008 over 6 core CalCOFI transects
PC 1 (20.5% var explained):
- 24/27 taxa with loadings > 0.5
- mesopelagic from 8 families: Myctophidae, Gonostomatidae, Sternoptychidae, Stomiidae, Phosichthyidae, Scopelarchidae, Argentinidae, and Microstomatidae
- Includes vertical migrators & non-migrators, plankton feeders & predators
- O2: declined 20% since 1980s (Bograd et al 2008, McClatchie et al 2010)

Declining deepwater O2 predicted in global climate models, now observed globally, esp OMZs. Mesopelagics: dominant plankton consumers, prey of dolphins, squid, predatory fishes.
PCA indicates significant environmental impacts across broad fish communities (Koslow et al 2011)

86 taxa consistently sampled, 1951-2008 over 6 core CalCOFI transects
PC 1 (20.5% var explained):
- 24/27 taxa with loadings > 0.5
- Mesopelagic from 8 families:
 Myctophidae, Gonostomatidae, Sternoptychidae, Stomiidae, Phosichthyidae, Scopelarchidae, Argentinidae, and Microstomatidae
- Includes vertical migrators & non-migrators, plankton feeders & predators

Graph:
- Declining deepwater O2 predicted in global climate models, now observed globally, esp OMZs.
- Mesopelagics: dominant plankton consumers, prey of dolphins, squid, predatory fishes.
PC 2 (CalCOFI): declining trend of dominant fishes in CCE, mostly endemics & cool-water affinity taxa

- 72% decline in overall CalCOFI larval fish abundance since 1969
- PC 2 (CalCOFI) explains 12.4% var, 6 of the 7 most abundant species in ichthyoplankton time series loaded highly (> 0.5). 76% decline (since ~1970 (83% without sardine included):
 - Pacific hake, northern anchovy, rockfish (*Sebastes* spp.), 2 mesopelagics (myctophid (*Stenobrachius leucopsarus*) & bathylagid (*Leuroglossus stilbius*)) (+)
 - Pacific sardine (-) (Koslow et al 2013)
- PC 1 (PPI): 44% var explained for 21 nearshore fishes
 - 78% decline, 1972-83 -> 1990-2010 (Miller & McGowan 2013)
- PC 2 (CalCOFI) & PC 1 (PPI) highly correlated (R = 0.85) despite limited overlap in species, indicating decline of fishes across the CC system: nearshore & offshore fishes: epi- & mesopelagic, benthopelagic; several trophic levels, exploited and unexploited
Temporal coherence seen in an assemblage of fishes whose larvae spatially co-occur

PC 2 dominant species were identified as a ‘northern’ affinity assemblage (Moser et al. 1987)

Are these patterns local (SCB is an ecotone) or do they extend across the Pacific?

Distributions of *Stenobrachius leucopsarus* & medusafish (*Icichthys lockingtoni*) extend to Japan
Declining fish in CC system: links to climate:

Significant relations to data-assimilative ROMS output for EKE, heat content (H) and upwelling (W), spatial correlations similar to PC1 for those variables.

(-) correlation with spiciness (input of subtropical water), heat content, SST
(+) correlation with zooplankton DV, W, EKE (transport of CC)

<table>
<thead>
<tr>
<th></th>
<th>T_{10}</th>
<th>Spiciness</th>
<th>Log Zoo DV</th>
<th>EKE EOF 1</th>
<th>H EOF 1</th>
<th>W EOF 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC_{fish}</td>
<td>-0.57***</td>
<td>-0.53***</td>
<td>0.70***</td>
<td>0.40*</td>
<td>-0.42*</td>
<td>0.67***</td>
</tr>
</tbody>
</table>
Species richness and mesopelagics /environment

<table>
<thead>
<tr>
<th></th>
<th>PC 1</th>
<th>PC 2</th>
<th>Deep O₂</th>
<th>T₁₀</th>
<th>W</th>
<th>MEI</th>
<th>PDO</th>
<th>NPGO</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>0.82***</td>
<td>-0.07</td>
<td>0.50**</td>
<td>0.39*</td>
<td>-0.42*</td>
<td>0.47*</td>
<td>0.44*</td>
<td>-0.48**</td>
</tr>
</tbody>
</table>
Species richness changes by biogeographic affinity

Changes in S closely linked to changes in warm-water affinity taxa

No significant change in #s of CC endemics or cool-water affinity taxa

Hypothesis: CalCOFI region is an ecotone
S sensitive to influx of warm-water affinity taxa during warmer periods: + PDO/MEI/SST and their decline during cool-water periods
Shannon-Wiener Index (H') (~Evenness)

<table>
<thead>
<tr>
<th></th>
<th>PC 1</th>
<th>PC 2</th>
<th>Deep O₂</th>
<th>T₁₀</th>
<th>W</th>
<th>MEI</th>
<th>PDO</th>
<th>NPGO</th>
</tr>
</thead>
<tbody>
<tr>
<td>H'</td>
<td>-0.21†</td>
<td>-0.55**</td>
<td>-0.20†</td>
<td>0.39*</td>
<td>0.59**</td>
<td>-0.03†</td>
<td>-0.11†</td>
<td>0.01†</td>
</tr>
</tbody>
</table>

Correlation Coefficient (R²): 0.37

![Graphs showing the relationship between Shannon-Wiener Index (H') and other variables over time.](image)
Community dominance in high PC2/low evenness years (blue) and low PC2/high evenness years (red)

1 of the 11 most abundant ichthyoplankton loaded significantly on PC 2, including northern anchovy, Pacific hake, rockfishes (*Sebastes* spp), *Leuroglossus stilbius*, *Stenobrachius leucopsarus*

Their decline significantly altered the dominance structure of the fish assemblage
Summary

• CalCOFI ichthyoplankton time series indicate coherent trends in
 – mesopelagic fishes in relation to midwater O_2
 – Decline since 1969 of dominant cool-water and CC endemic fishes in relation to EKE (CC transport), upwelling, heat content

• Species richness (+) correlated with warm-water mesopelagic fish abundance, indicating movements of warm-water taxa in & out of the SCB but no replacement of CC endemics or cool-water fauna

• Evenness (Shannon-Wiener Index, H') (-) correlated with PC 2: abundance of dominant cool-water fishes
 – Decline of dominant cool-water fishes (e.g. anchovy, hake, rockfishes, *Leuroglossus stilbius*, *Stenobrachius leucopsarus*) significantly altered the dominance structure of the fish assemblage
 – The increase in H', a measure of diversity, following the decline of the dominant fish taxa in the CCE indicates that biodiversity can prove an ambiguous measure of ecosystem status
Questions?

Collaborators
Helena McMonagle
Lia Charbit-Siegelman
Pete Davison
Bill Watson
Steve Bograd
Elliott Hazen
Mike Jacox

Funding sources:
NOAA (CalCOFI)
NSF: REU program,