Forecasting the flock: using species distribution models to evaluate the effects of climate change on future seabird foraging aggregations in the California Current System

Dori Dick, Jaime Jahncke, Nadav Nur, Julie Howar, Jeanette Zamon, David Ainley, Ken Morgan, Lisa Ballance, and David Hyrenbach

November 8, 2016
PICES 2016 S5: Changing Oceans
Motivation for Study

- 2011 multispecies “hotspot” study

- Modeled 16 species, few pelagic

- Coastal hotspots, no pelagic areas

- Large data gaps, esp. OR & WA

Nur et al. 2011
Questions

1. How do multispecies foraging aggregations (hotspots) shift with increasing ocean temperature?

2. How might different species be affected to climate-related changes?
Seabirds

• Conspicuous marine predators

• Threatened marine group

• Important indicators of marine ecosystem status
California Current System

- Eastern boundary current system
- Spring/summer upwelling, high productivity
- 5 federally protected national marine sanctuaries
Seabird Data

- At-sea transects divided into 3km segments (bins)
- Bin midpoints aggregate seabird counts by species
- Doubled data – bins and species

75652 Bins
Oct 1997 – June 2012

Cruise Data Points
(some points may be masked by others)
- NWFSC (2003-2012)*
- GLOBEC (2000, 2002)*
- CWS & Environment Canada (1997-2010)**
- CalCOFI (1997-2007)**
Environmental/Climate Predictors

Physical
- Average depth (m)
- Contour Index (topographic relief, %)
- Distance to land
- Distance to 200m, 1km, 3 km isobaths

Remotely Sensed
- Chlorophyll-a conc. (mg/m³)
- Sea Surface Height (m)
- Sea Surface Temperature (°C)

Effort
- Bin area

Climate Indices
- SOI
- NPGO
- PDO

Other Temporal/Spatial
- Year
- Month
- Day
- Latitude
- Spring Transition Anomalies

All data aggregated to bin midpoints
Statistical Model Development & Predictive Modeling

- Negative binomial regression
- 30 species: coastal and pelagic species locally breeding and migratory species

Statistical Model Development & Predictive Modeling

- February (winter), May (spring), July (summer), October (fall)
- Rel. densities standardized, averaged by month

Sample through matrices to predict rel. density
Developing Future Scenarios

• 10 regions
Developing Future Scenarios

• Assessed relationship between SST and SSH or Chla to predict future SSH and Chla

“Best estimates of ocean warming in the top one hundred meters are about 0.6°C (RCP2.6) to 2.0°C (RCP8.5)”

-- IPCC AR5 report
Future Scenario Predictions

- Increase SST
- Predict future SSH and Chla

Predict future species distributions

Group species based on estimated sensitivity to changing seascape
- Diving vs. Surface Feeders
Suitable habitat

- ↓ within 200m
- ↓ in south
- ↑ beyond 200m
- ↑ along northern CA, southern OR, north of Van. Island
Results: Surface Feeders (Rel. Density & Difference Maps)

Suitable habitat

- **↑** beyond 200m
- **↑** along CA, southern OR, west of Van. Island
- Cobb Seamount retains suitability
Projected future suitable habitat:

- Some NMS will remain suitable
- Some NMS will become suitable
- Some areas without protection will become suitable in the future
Summary

- Offshore and northward shifts
- Suitable habitat ↓ within 200m isobath
- Divers and surface feeders sensitive to climate related changes, esp. year-round residents and breeders
- Cobb Seamount may retain suitable habitat

Bob Whitney/BirdNote

http://animalspartner.blogspot.com/2015/01/storm-petrel.html
Caveats and Conclusions

• Models are representations of reality
 ➢ Statistical correlations
 ➢ Non-stationary relationships
 ➢ No consideration of intra- or inter-species interactions, adaptation etc.

• Climate-related changes are leading to novel conditions, responses will be difficult to predict

• Initial step in understanding magnitude and direction underlying projected changes in seabird habitat in CCS
Thank You to....

Dawn Wright, Julia Jones
Researchers involved with data collection
My co-authors
Point Blue Conservation Science
PICES, Early Career Scientist Award
Oregon Sea Grant
Questions?