Interactive effects of ocean acidification and ocean warming on Pacific herring (Clupea pallasi) early life stages

Cristina Villalobos¹, Brooke Love¹, M. Brady Olson², and Leo Bodensteiner¹
¹Huxley College of the Environment, Western Washington University, Bellingham, WA
²Shannon Point Marine Center, Western Washington University, Anacortes, WA

PICES 2016
San Diego, CA
Seasonal upwelling gives us a glimpse of future ocean acidity
Pacific herring spawning stocks in Puget Sound are predisposed to low ocean acidity levels.
Responses to acidification are species-specific

Impairs olfactory senses

Orange Clownfish (Munday et al. 2008. *PNAS*)

Reduces growth and survival

No sperm motility effects

No embryonic or hatch rate effects

Atlantic Herring (Franke & Clemmesen 2011. *Biogeosci.*)
Organisms are bombarded by multiple environmental stressors.

- Human activities
- Increased greenhouse gas concentrations
 - Increased UV
 - Increased air temperature
 - Intensified atmospheric pressure gradients
 - Increased storm frequency
 - Intensified upwelling (?)
 - Increased CO₂
 - Increased water temperature
 - Decreased pH

PICES 2016
San Diego, CA

“Bigger may not be Better”

- Warmer temperatures accelerate growth
- Gill and muscle deformities
- Increases energetic needs for survival – reduced aerobic scopes and swimming performances

How are Pacific herring embryos affected by pCO$_2$ and temperature changes?
Herring Collections

1. Quilcene, WA
 • March 2016

1. Craig, AK
 • March 2016

2. Cherry Point, WA
 • May 2016
Fertilization Success

Hatching Success

Larval Weight, Length

Respiration
Hypotheses

<table>
<thead>
<tr>
<th></th>
<th>13°C</th>
<th>19°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient 400 ppm</td>
<td>Standard development</td>
<td>Increased respiration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shorter time to hatch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spinal abnormalities</td>
</tr>
<tr>
<td>High 1700 ppm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hypotheses

<table>
<thead>
<tr>
<th></th>
<th>13°C</th>
<th>19°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient 400 ppm</td>
<td>Standard development</td>
<td>Increased respiration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shorter time to hatch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spinal abnormalities</td>
</tr>
<tr>
<td>High 1700 ppm</td>
<td>Standard development</td>
<td>Reduced fertilization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduced hatching</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low survivorship</td>
</tr>
</tbody>
</table>
Shorter larvae observed in the warmer temperature
Experimental Tanks
Red = 19 C; Blue = 13 C

Storage Tank

pCO₂ mixing tanks

1700 ppm
400 ppm
400 ppm
1700 ppm
400 ppm
1700 ppm
1700 ppm
400 ppm

Experimental Tanks
Red = 19 C; Blue = 13 C

PICES 2016
San Diego, CA
Spawning biomass at Cherry Point, WA decreased from 15,000 tons in 1973 to 1,700 tons in 2004.
Acknowledgments

• Dr. Paul Dinnel
• Laurie Niewolny, WDFW
• Scott Walker, ADFG
• Intrepid Research Assistants
 – Jocelyn Wenslof
 – Max Miner
• Dr. Katherina Schoo