Increasing Pacific decadal variability under greenhouse forcing

Giovanni Liguori
and
Emanuele Di Lorenzo

School of Earth & Atmospheric Sciences
Georgia Institute of Technology
Sea Surface Temperature (SST)
Nino3 Index (NOAA SST)
Nino3 Index (NOAA SST)
Nino3 Index (NOAA SST)

ENSO

Nino3 regressed on NOAA SST
ENSO

Nino3 regressed on NOAA SST

[°C/std]

-1
-0.5
0
0.5
1
TROPICS

Nino3 regressed on NOAA SST

ENSO

[Temperature anomaly map in °C/standard deviation]
TROPICS

EXTRA-TROPICS

ENSO

Nino3 regressed on NOAA SST

[Temperature anomaly in °C/standard deviation]
Nino3 regressed on NOAA SST

Nino3 correlation with NCEP SLP(-1)

SLP Precursor (1 year prior)
ENSO

Nino3 regressed on NOAA SST

TROPICS

SLP PRECURSOR (1 year prior)

Nino3 correlation with NCEP SLP(-1)

[T°C/ std]
Nino3 regressed on NOAA SST

ENSO

North Pacific Oscillation

SLP PRECURSOR (1 year prior)
Nino3 correlation with NCEP SLP(-1)

TROPICS

EXTRA-TROPICS
ENSO

Nino3 regressed on NOAA SST

TROPICS

SLP PRECURSOR (1 year prior)

Nino3 correlation with NCEP SLP(-1)

North Pacific Oscillation

EXTRA-TROPICS

[°C/std]
North Pacific Oscillation
ATMOSPHERE

North Pacific Gyre Oscillation
OCEAN

Meridional Modes

EXTRA-TROPICS

TROPICS

Winter

Spring

Fall
Extra-tropical Teleconnection

North Pacific Gyre Oscillation

Pacific Decadal Oscillation

Aleutian Low

Winter

Fall

Spring

Meridional Modes

ENSO

Tropics
A NULL HYPOTHESIS FOR PACIFIC DECADAL VARIABILITY

Red-noise model (AR-1) of PDV

- **Forcing:** Stochastic variability of the NPO
- **Memory:** Evolution of the ocean-atmosphere coupled system from extratropics to tropics and back to extratropics (1–2 years)

[Di Lorenzo, Liguori et al., 2015. GRL]
Question

Is the Pacific Decadal Variability (PDV) increasing under greenhouse forcing?
Question
Is the Pacific Decadal Variability (PDV) increasing under greenhouse forcing?

Approach
Examine 30-member Community Earth System Model Large Ensemble (CESM-LE) from 1920-2100 (RCP8.5 scenario)
Question
Is the Pacific Decadal Variability (PDV) increasing under greenhouse forcing?

Approach
Examine 30-member Community Earth System Model Large Ensemble (CESM-LE) from 1920-2100 (RCP8.5 scenario)

Methodology
Find an index that captures the PDV mechanisms of the conceptual framework
Methodology
Find an *index* that *captures the PDV mechanisms* of the conceptual framework
An index that captures the **PDV** mechanisms
An index that capture the **PDV** mechanisms
An index that captures the PDV mechanisms.

ENSO* signal removed via regression analysis.
An index that captures the **PDV** mechanisms

EOF

- SSTa-DJF\((-1)\)^*- in NP
- SSTa-MAM\((-1)\)^*- in TM

ENSO* signal removed via regression analysis
An index that captures the PDV mechanisms

EOF

SSTa-DJF(-1)* in NP
SSTa-MAM(-1)* in TM
SSTa-SON(-1) in TP

ENSO* signal removed via regression analysis
An index that captures the PDV mechanisms

EOF (extra-tropical teleconnection)

1. SSTa-DJF(-1)* in NP
2. SSTa-MAM(-1)* in TM
3. SSTa-SON(-1) in TP
4. SSTa-DJF(0) in NP

ENSO* signal removed via regression analysis
An index that captures the PDV mechanisms

PROG index
leading PC of the seasonally-spatially stacked EOF analysis

ENSO* signal removed via regression analysis
PROG index regressed onto SSTa/SLPa 1950-2014
PROG index regressed onto SSTa/SLPa

1950-2014
PROG index regressed onto SSTa/SLPa

1950-2014

[SST NOAA NPGO-like]

DJF (-1)

[°C]

[PROG index regressed onto SSTa/SLPa]

1950-2014

[SST NOAA NPGO-like]

DJF (-1)

[°C]
PROG index regressed onto SSTa/SLPa

1950-2014
PROG index regressed onto SSTa/SLPa

SST NOAA

NPGO-like

PMM

ENSO

[°C]

DJF (-1)

MAM (-1)

JJA (-1)

SON (-1)

1950-2014
PROG index regressed onto SSTa/SLPa

1950-2014
PROG index regressed onto SSTa/SLPa

1950-2014
1950-2014

DJF (-1)

MAM (-1)

JJA (-1)

SON (-1)

DJF (0)

PMM

ENSO

NPGO-like

NPO-like

SLP NCEP

PROG index regressed onto SSTa/SLPa

1950-2014

Extra-tropical Teleconnection

ENSO

PDO-like

AL-like

NPGO-like

NPO-like

PDO

Ocean

NPGO

Ocean

Meridional Modes

Montreal

SON (-1)

TROPICS

PDO

AL

MAM (-1)

ATMOSPHERE

ATMOSPHERE

DJF (-1)

DJF (0)

Extra-tropical Teleconnection

ENSO

PDO-like

AL-like

NPGO-like

NPO-like

PDO

Ocean

NPGO

Ocean

Meridional Modes

Montreal

SON (-1)

TROPICS
PROG index regressed onto SSTa/SLPa

1950-2014
PROG index regressed onto SSTa/SLPa

1950-2014

OBS vs CESM-LENS

SST NOAA

NPGO-like

PDO-like

DJF (-1)

MAM (-1)

JJA (-1)

SON (-1)

DJF (0)

°C
PROG index regressed onto SSTa/SLPa

1950-2014

OBS vs CESM-LENS

SST NOOA

NPGO-like

SST LENS

DJF (-1)

MAM (-1)

JJA (-1)

SON (-1)

DJF (0)

PDO-like

[°C]
PROG index regressed onto SSTa/SLPa

1950-2014

OBS vs CESM-LENS

SLP NCEP NPGO-like

SLP LENS

PDO-like
QUESTION

Is the **PROG index** capturing the PDV?
QUESTION
Is the **PROG index** capturing the PDV?
QUESTION
Is the **PROG index** capturing the PDV?

Zhang et al., 1997
QUESTION

Is the **PROG index** capturing the PDV?

[Zhang et al., 1997]
QUESTION

Is the **PROG index** capturing the PDV?

✓

[Zhang et al., 1997]
QUESTION
Is the PROG index capturing the PDV?

QUESTION
Is PDV increasing under greenhouse forcing?

Zhang et al., 1997
Is the **PROG index** capturing the PDV? ✓

Is **PDV** increasing under greenhouse forcing? ✓

[Zhang et al., 1997]
QUESTION
Is the **PROG index** capturing the PDV?

✓

QUESTION
Is **PDV** increasing under greenhouse forcing?

✓

Same result for NOAA and Hadley SST

[Zhang et al., 1997]
QUESTION
Is the **PROG index** capturing the PDV?

✓

QUESTION
Is **PDV** increasing under greenhouse forcing?

✓

[Zhang et al., 1997]
QUESTION
Is the PROG index capturing the PDV?
✓

QUESTION
Is PDV increasing under greenhouse forcing?
✓

QUESTION
Why is PDV variance increasing?

Zhang et al., 1997
QUESTION
Is the PROG index capturing the PDV?

QUESTION
Is PDV increasing under greenhouse forcing?

QUESTION
Why is PDV variance increasing?

HYPOTHESIS
The PMM-ENSO relationship changing under GHG
QUESTION
Is the PROG index capturing the PDV?

✓

QUESTION
Is PDV increasing under greenhouse forcing?

✓

QUESTION
Why is PDV variance increasing?

HYPOTHESIS
The PMM-ENSO relationship changing under GHG
HYPOTHESIS

The PMM-ENSO relationship changing under GHG
TREND IN THE VARIANCE

HYPOTHESIS
The PMM-ENSO relationship changing under GHG
HYPOTHESIS

The **PMM-ENSO** relationship changing under GHG
Both ENSO and PMM show significant trend.

Both in model and observations the trend in PMMsst is larger than PMMtau, consistent with the AR1-type amplification.

HYPOTHESIS

The PMM-ENSO relationship changing under GHG.
TREND IN THE VARIANCE

![Graph showing trends in PMM-ENSO variance](image)

HYPOTHESIS

The **PMM-ENSO** relationship changing under GHG
HYPOTHESIS

The **PMM-ENSO** relationship changing under GHG

COUPLING

between PMM and ENSO

TREND IN THE VARIANCE

20-year running std

[Norm. units]

Chang et al., 2007
The PMM-ENSO relationship is changing under GHG.

HYPOTHESIS

COUPLING between PMM and ENSO

TREND IN THE VARIANCE

Correlation between Spring **PMM** and Winter **Niño34**

Correlation

- **period 1920-1960**
- **period 2060-2100**

Niño34 Index (NDJ)

- **Correlation period 1920-1960**
- **Correlation period 2060-2100**

20% increase

CEM Run #

- **hist**
- **rcp**
- **OBS**
HYPOTHESIS

The PMM-ENSO relationship is changing under GHG.

COUPLING between PMM and ENSO

TREND IN THE VARIANCE

The correlation between Spring PMM and Winter Niño34 is increasing.

Correlation between Spring PMM and Winter Niño34

<table>
<thead>
<tr>
<th>Member</th>
<th>Correlation TP-PMM τ index: 1920-1970 vs 2050-2100</th>
<th>Percentage Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>12345</td>
<td>0.42</td>
<td>~20%</td>
</tr>
<tr>
<td>6789</td>
<td>0.51</td>
<td></td>
</tr>
</tbody>
</table>

Periods

- Period 1920-1960
- Period 2060-2100

Graphical Representation

- **R** = 0.42 for period 1920-1960
- **R** = 0.51 for period 2060-2100

~20% increase
PMM/ENSO **variance** and **coupling** are **increasing** in both OBS and CESM-LENS
PMM/ENSO **variance** and **coupling** are increasing in both OBS and CESM-LENS

HYP: Under GHG forcing the thermodynamical coupling increase

\[
WESp \approx \left. \frac{\partial \text{Heat Flux}}{\partial \text{Wind Speed}} \right|_{\text{LENS}}
\]
PMM/ENSO **variance** and **coupling** are **increasing** in both OBS and CESM-LENS

HYP: Under GHG forcing the thermodynamical coupling increase

\[
WESp \approx \frac{\partial \text{Heat Flux}}{\partial \text{Wind Speed}}
\]

![Graph showing the trend of PMM/ENSO variance and coupling over time, with OBS and LENS data, and a quadratic fit.](image-url)
Ok, Nice!
But why should PICES be interested in this?

HYP: Under GHG forcing the thermodynamical coupling increase

\[WESp \approx \frac{\partial \text{Heat Flux}}{\partial \text{Wind Speed}} \]

OBS

LENS

PMMSST (20-YR RUNNING STD)
Ok, Nice!
But why should PICES be interested in this?

HYP: Under GHG forcing the thermodynamical coupling increase

Increased variance of the PDV may result in an **increase** in the decadal **variability of fishery stocks**
Ok, Nice!
But why should PICES be interested in this?

HYP: Under GHG forcing the thermodynamical coupling increase

Increased variance of the PDV may result in an **increase** in the decadal **variability of fishery stocks**

ONGOING AND FUTURE WORK

1. **Identify** the relationship between Pacific climate modes and fishery stocks in the historical records
2. **Project** changes in fishery stocks variability using climate projections of Pacific climate modes
CASE STUDY

Large scale Pacific climate modes and salmon (Sockeye) survival rate

* In collaboration with Eric Hertz (Univ. Victoria)
CASE STUDY

Large scale Pacific climate modes and salmon (Sockeye) survival rate

* In collaboration with Eric Hertz (Univ. Victoria)
CASE STUDY

Large scale Pacific climate modes and salmon (Sockeye) survival rate

* In collaboration with Eric Hertz (Univ. Victoria)
CASE STUDY

Large scale Pacific climate modes and salmon (Sockeye) survival rate

![Graph showing survival rate data stations](image)

![Map of data stations](image)
CASE STUDY

Large scale Pacific climate modes and salmon (Sockeye) survival rate

Correlation climate modes and survival rate time series

<table>
<thead>
<tr>
<th></th>
<th>PDO</th>
<th>NPGO</th>
<th>sPMM</th>
<th>wCTI</th>
<th>wN1+2</th>
<th>wN3</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 - 35</td>
<td>-0.21</td>
<td>0.66</td>
<td>0.60</td>
<td>-0.21</td>
<td>-0.09</td>
<td>-0.14</td>
</tr>
<tr>
<td>23 - 35</td>
<td>0.19</td>
<td>0.46</td>
<td>0.23</td>
<td>0.05</td>
<td>0.15</td>
<td>0.12</td>
</tr>
<tr>
<td>22 - 25</td>
<td>-0.09</td>
<td>0.00</td>
<td>0.22</td>
<td>-0.23</td>
<td>0.04</td>
<td>-0.18</td>
</tr>
<tr>
<td>21 - 25</td>
<td>-0.04</td>
<td>-0.04</td>
<td>0.18</td>
<td>-0.24</td>
<td>0.00</td>
<td>-0.20</td>
</tr>
<tr>
<td>20 - 62</td>
<td>-0.42</td>
<td>-0.15</td>
<td>0.17</td>
<td>-0.07</td>
<td>-0.01</td>
<td>-0.12</td>
</tr>
<tr>
<td>19 - 62</td>
<td>0.15</td>
<td>-0.30</td>
<td>-0.26</td>
<td>0.02</td>
<td>-0.07</td>
<td>0.03</td>
</tr>
<tr>
<td>18 - 62</td>
<td>-0.12</td>
<td>0.08</td>
<td>0.15</td>
<td>-0.09</td>
<td>-0.14</td>
<td>-0.06</td>
</tr>
<tr>
<td>17 - 62</td>
<td>0.05</td>
<td>0.57</td>
<td>0.40</td>
<td>-0.14</td>
<td>-0.08</td>
<td>-0.06</td>
</tr>
<tr>
<td>16 - 62</td>
<td>-0.32</td>
<td>0.06</td>
<td>0.26</td>
<td>-0.05</td>
<td>0.00</td>
<td>-0.07</td>
</tr>
<tr>
<td>15 - 62</td>
<td>0.13</td>
<td>-0.22</td>
<td>-0.18</td>
<td>0.01</td>
<td>-0.06</td>
<td>0.04</td>
</tr>
<tr>
<td>14 - 62</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.00</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>13 - 62</td>
<td>-0.35</td>
<td>-0.14</td>
<td>0.24</td>
<td>-0.18</td>
<td>-0.05</td>
<td>-0.18</td>
</tr>
<tr>
<td>12 - 62</td>
<td>0.39</td>
<td>-0.58</td>
<td>-0.74</td>
<td>0.34</td>
<td>0.12</td>
<td>0.24</td>
</tr>
<tr>
<td>11 - 62</td>
<td>0.02</td>
<td>-0.26</td>
<td>-0.22</td>
<td>0.02</td>
<td>-0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>10 - 62</td>
<td>-0.01</td>
<td>-0.14</td>
<td>-0.08</td>
<td>-0.02</td>
<td>-0.09</td>
<td>-0.00</td>
</tr>
<tr>
<td>9 - 62</td>
<td>-0.23</td>
<td>0.26</td>
<td>0.33</td>
<td>-0.05</td>
<td>0.03</td>
<td>-0.05</td>
</tr>
<tr>
<td>8 - 62</td>
<td>-0.51</td>
<td>0.15</td>
<td>0.46</td>
<td>-0.30</td>
<td>-0.09</td>
<td>-0.28</td>
</tr>
<tr>
<td>7 - 62</td>
<td>-0.14</td>
<td>0.28</td>
<td>0.14</td>
<td>-0.09</td>
<td>-0.07</td>
<td>-0.13</td>
</tr>
<tr>
<td>6 - 62</td>
<td>-0.01</td>
<td>-0.13</td>
<td>-0.14</td>
<td>-0.02</td>
<td>-0.03</td>
<td>-0.02</td>
</tr>
<tr>
<td>5 - 62</td>
<td>0.00</td>
<td>0.27</td>
<td>0.10</td>
<td>-0.08</td>
<td>-0.19</td>
<td>-0.05</td>
</tr>
<tr>
<td>4 - 62</td>
<td>0.13</td>
<td>-0.38</td>
<td>-0.39</td>
<td>0.06</td>
<td>-0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>3 - 62</td>
<td>0.01</td>
<td>-0.36</td>
<td>-0.24</td>
<td>0.02</td>
<td>-0.11</td>
<td>0.01</td>
</tr>
<tr>
<td>2 - 62</td>
<td>0.14</td>
<td>-0.12</td>
<td>-0.20</td>
<td>-0.01</td>
<td>-0.06</td>
<td>0.01</td>
</tr>
<tr>
<td>1 - 38</td>
<td>0.10</td>
<td>-0.23</td>
<td>0.00</td>
<td>-0.07</td>
<td>0.00</td>
<td>-0.02</td>
</tr>
</tbody>
</table>
CASE STUDY

Large scale Pacific climate modes and salmon (Sockeye) survival rate

<table>
<thead>
<tr>
<th></th>
<th>PDO</th>
<th>NPGO</th>
<th>PMM</th>
<th>wCTI</th>
<th>wN1+2</th>
<th>wN3</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 - 35</td>
<td>-0.21</td>
<td>0.66</td>
<td>0.60</td>
<td>-0.21</td>
<td>-0.09</td>
<td>-0.14</td>
</tr>
<tr>
<td>23 - 35</td>
<td>0.19</td>
<td>0.46</td>
<td>0.23</td>
<td>0.05</td>
<td>0.15</td>
<td>0.12</td>
</tr>
<tr>
<td>22 - 25</td>
<td>-0.09</td>
<td>0.00</td>
<td>0.22</td>
<td>-0.23</td>
<td>0.04</td>
<td>-0.18</td>
</tr>
<tr>
<td>21 - 25</td>
<td>-0.04</td>
<td>-0.04</td>
<td>0.18</td>
<td>-0.24</td>
<td>0.00</td>
<td>-0.20</td>
</tr>
<tr>
<td>20 - 62</td>
<td>-0.42</td>
<td>-0.15</td>
<td>0.17</td>
<td>-0.07</td>
<td>-0.01</td>
<td>-0.12</td>
</tr>
<tr>
<td>19 - 62</td>
<td>0.15</td>
<td>-0.30</td>
<td>-0.26</td>
<td>0.02</td>
<td>-0.07</td>
<td>0.03</td>
</tr>
<tr>
<td>18 - 62</td>
<td>-0.12</td>
<td>0.08</td>
<td>0.15</td>
<td>-0.09</td>
<td>-0.14</td>
<td>-0.06</td>
</tr>
<tr>
<td>17 - 62</td>
<td>0.05</td>
<td>0.57</td>
<td>0.40</td>
<td>-0.14</td>
<td>-0.08</td>
<td>-0.06</td>
</tr>
<tr>
<td>16 - 62</td>
<td>-0.32</td>
<td>0.06</td>
<td>0.26</td>
<td>-0.05</td>
<td>0.00</td>
<td>-0.07</td>
</tr>
<tr>
<td>15 - 62</td>
<td>0.13</td>
<td>-0.22</td>
<td>-0.18</td>
<td>0.01</td>
<td>-0.06</td>
<td>0.04</td>
</tr>
<tr>
<td>14 - 62</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.00</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>13 - 62</td>
<td>-0.35</td>
<td>-0.14</td>
<td>0.24</td>
<td>-0.18</td>
<td>-0.05</td>
<td>-0.18</td>
</tr>
<tr>
<td>12 - 62</td>
<td>0.39</td>
<td>-0.58</td>
<td>-0.74</td>
<td>0.34</td>
<td>0.12</td>
<td>0.24</td>
</tr>
<tr>
<td>11 - 62</td>
<td>0.02</td>
<td>-0.26</td>
<td>-0.22</td>
<td>0.02</td>
<td>-0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>10 - 62</td>
<td>-0.01</td>
<td>-0.14</td>
<td>-0.08</td>
<td>-0.02</td>
<td>-0.09</td>
<td>-0.00</td>
</tr>
<tr>
<td>9 - 62</td>
<td>-0.23</td>
<td>0.26</td>
<td>0.33</td>
<td>-0.05</td>
<td>0.03</td>
<td>-0.05</td>
</tr>
<tr>
<td>8 - 62</td>
<td>-0.51</td>
<td>0.15</td>
<td>0.46</td>
<td>-0.30</td>
<td>-0.09</td>
<td>-0.28</td>
</tr>
<tr>
<td>7 - 62</td>
<td>-0.14</td>
<td>0.28</td>
<td>0.14</td>
<td>-0.09</td>
<td>-0.07</td>
<td>-0.13</td>
</tr>
<tr>
<td>6 - 62</td>
<td>-0.01</td>
<td>-0.13</td>
<td>-0.14</td>
<td>-0.02</td>
<td>-0.03</td>
<td>-0.02</td>
</tr>
<tr>
<td>5 - 62</td>
<td>0.00</td>
<td>0.27</td>
<td>0.10</td>
<td>-0.08</td>
<td>-0.19</td>
<td>-0.05</td>
</tr>
<tr>
<td>4 - 62</td>
<td>0.13</td>
<td>-0.38</td>
<td>-0.39</td>
<td>0.06</td>
<td>-0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>3 - 62</td>
<td>0.01</td>
<td>-0.36</td>
<td>-0.24</td>
<td>0.02</td>
<td>-0.11</td>
<td>0.01</td>
</tr>
<tr>
<td>2 - 62</td>
<td>0.14</td>
<td>-0.12</td>
<td>-0.20</td>
<td>-0.01</td>
<td>-0.06</td>
<td>0.01</td>
</tr>
<tr>
<td>1 - 38</td>
<td>0.10</td>
<td>-0.23</td>
<td>0.00</td>
<td>-0.07</td>
<td>0.00</td>
<td>-0.02</td>
</tr>
</tbody>
</table>

Correlation climate modes and survival rate time series
The **PDV is increasing** (PROG index variance) in OBS and in GHG forced simulations.

This increase in PDV is **linked to changes in the PMM-ENSO relationship.** Increase in variance and coupling.

In the model this changes are associated with and increase in the **thermodynamical coupling (WES).**

ONGOING and FUTURE WORK: Assess the significance of this study in Salmon survival rate along the North East Pacific coast.
Russky Island