Mechanisms triggering the 1976-77 regime shift in the North Pacific.

Katerina Giamalaki
ag2e13@soton.ac.uk

Claudie Beaulieu (UoS)
Stephanie Henson (NOCS)
Davide Faranda (LSCE/IPSL)
Adrian Martin (NOCS)
Simon Josey (NOCS)
Introduction
• Regime Shifts
• Shift Area
• Hypothesis

1. Did an extreme atmospheric event initiate the shift?
 • Dynamical Systems Analysis

2. Were there sudden changes in net heat flux that maintained the shift?
 • Empirical Orthogonal Functions (EOFs) & Environmental change-point detection analysis (EnvCpt)

How is everything connected? - Conclusions
Regime Shifts

• Abrupt changes
• High - amplitude variability
• Propagation through trophic levels
• Leading to ecosystem restructuring

http://www.thenakedscientists.com/HTML/articles/article/brucewrightcolumn1.htm
Positive PDO - Atmosphere

- Positive PDO
- NPI

Aleutian Low
North Pacific High

SST
Positive PDO – Ocean

- Oyashio Current
- Alaska Current
- North Pacific Current
- Kuroshio Current
- North Equatorial Current
- California Current
- Equatorial Countercurrent
What caused the 1977 shift?

Examine the potential of dynamical and statistical analyses to reveal new insights.

Test the hypothesis:

- Extreme atmospheric event \rightarrow forcing
- Changes in heat budget \rightarrow maintenance
1. Did an extreme atmospheric event initiate the shift?
 • Dynamical Systems Analysis

2. Were there sudden changes in net heat flux that maintained the shift?
 • Empirical Orthogonal Functions (EOFs) & Environmental change-point detection analysis (EnvCpt)

How is everything connected? - Conclusions
Dynamical system analysis

- **Sea Level Pressure (SLP)**
 - Daily from January 1948 to August 2016
 - National Centre for Environmental Prediction/National Centre for Atmospheric Research (NCEP/NCAR) reanalysis 2.5°x2.5°

- **Calculation of instantaneous properties:**
 - Instantaneous dimension $d(\zeta)$
 - Persistence $\theta(\zeta)$

(Faranda et al. 2017)
Instantaneous Properties

\[\zeta_1 \text{ (a state of the system)} \]

\[\text{Field value} \]

\[\text{Daily SLP pattern} \]

\[\theta(\zeta) = \text{indicator of the persistence time of each } \bullet \]

\[d(\zeta) = \text{number of degrees of freedom for each } \bullet \]
Extreme SLP patterns

- $d(\zeta)$ extreme low
- $\theta(\zeta)$ extreme high

Pa $\times 10^5$

1.015
1.01
1.005
1

Positive NPI
Negative NPI

10/21
When did the extreme SLP happen?

- \(d(\zeta)\) extreme low
- \(\theta(\zeta)\) extreme high

![Diagrams showing the distribution of occurrences for different SLP conditions.](image-url)
Is 1977 different?

Average $d(\zeta)$ extreme low days per year = 5.3

94% of extreme days occur in winter (Jan-Feb)
Outline

- Introduction
 - Regime Shifts
 - Shift Area
 - The 1977 regime shift

1. Did an extreme atmospheric event initiate the shift?
 - Dynamical Systems Analysis

2. Were there sudden changes in net heat flux that maintained the shift?
 - Empirical Orthogonal Functions (EOFs) & Environmental change-point detection analysis (EnvCpt)

- How is everything connected? - Conclusions
Empirical Orthogonal Functions (EOFs)

- Identify large scale patterns governing the region

- Net heat flux
 - Winter averages from January 1948 to August 2016
 - NCEP/NCAR reanalysis 2.5°x2.5°
Any sudden changes in the net heat flux?

EOF 1: 22%

Abrupt change - 1979
Environmental change-point detection analysis (EnvCpt)

- Fits eight models
- Characterizes different types of variability
 - no changes
 - long-term trends
 - changes in mean/variance
 - changes in trend
 - short term memory
- Net heat flux (First EOF & Pixel-wise)
 - Winter averages from January 1948 to August 2016
 - NCEP/NCAR reanalysis 2.5°x2.5°

(Killick, Beaulieu and Taylor, 2016; https://cran.r-project.org/web/packages/EnvCpt/index.htm)
Any sudden changes in the net heat flux?

EnvCpt \rightarrow 1st EOF of net heat flux

Trend cpt + AR(1)

Trend cpt

Mean cpt + AR(1)

Mean cpt

Trend + AR(1)

Trend

Mean + AR(1)

Mean

Data

AIC

More likely
Less likely

17/21
Any sudden changes in the net heat flux?

Kuroshio – Oyashio Extension

EOF 1 – Net heat flux

Number of pixels per year

Longitude

Latitude

140 160 180

40 35 30

30 40

18/21
1. Did an extreme atmospheric event initiate the shift?
 • Dynamical Systems Analysis

2. Were there sudden changes in net heat flux that maintained the shift?
 • Empirical Orthogonal Functions (EOFs) & Environmental change-point detection analysis (EnvCpt)

How is everything connected? - Conclusions
How is everything connected?

1. Aleutian Low deepening
2. Westerlies and Southerlies increase
3. SST increase - Ekman downwelling
4. SST decrease - cold air advection
5. Rossby waves
6. Downward heat fluxes increase
Conclusions

- Novel approaches including Dynamical System and Change-point Detection Analyses showing:
 - Statistical evidence that an extreme Aleutian Low occurred in winter 1976-77;
 - Strongest and most persistent Aleutian Low throughout the whole study period;
 - Abrupt changes detected in the Kuroshio-Oyashio Extension region centred around the year 1977.

ag2e13@soton.ac.uk