ROLES OF THE OCEAN MESOSCALE IN THE LATERAL SUPPLY OF MASS, HEAT, CARBON AND NUTRIENTS TO THE NORTHERN HEMISPHERE SUBTROPICAL GYRE

AYAKO YAMAMOTO\textsuperscript{1*}, JAIME B. PALTER\textsuperscript{1,2}, CAROLINA O. DUFOUR\textsuperscript{1,3}, STEPHEN M. GRIFFIES\textsuperscript{4}, DANIELE BIANCHI\textsuperscript{5}, MARIONA CLARET\textsuperscript{6}, JOHN P. DUNNE\textsuperscript{4}, IVY FRENGER\textsuperscript{7}, ERIC D. GALBRAITH\textsuperscript{8}

\textsuperscript{1}Department of Atmospheric and Oceanic Sciences, McGill University, Canada
\textsuperscript{2}Graduate School of Oceanography, University of Rhode Island, USA.
\textsuperscript{3}Atmospheric and Oceanic Sciences Program, Princeton University, USA
\textsuperscript{4}NOAA/Geophysical Fluid Dynamics Laboratory, USA.
\textsuperscript{5}Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, USA.
\textsuperscript{6}Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, USA.
\textsuperscript{7}GEOMAR Helmholtz Centre for Ocean Research, Germany.
\textsuperscript{8}IICREA-ICTA, Universitat Autonoma de Barcelona, Bellaterra, Spain.
\textsuperscript{*Current affiliation: Japan Agency for Marine-Earth Science and Technology, Japan
Subtropical gyres: “Ocean Desert”

Mean Annual concentration of phytoplankton chlorophyll from NASA MODIS
http://www.rapid.ac.uk
Where and by what processes are nutrients supplied to the subtropical gyres?
Supply mechanisms of nutrients into the oligotrophic subtropical gyres

*Vertical processes* (e.g. mixing and upwelling from intermediate depths)

→ New production outpaced the known vertical supply of nutrients to the subtropical gyre euphotic zone (Mcgillicuddy Jr et al. 1998; Oschlies and Garcon 1998)
Supply mechanisms of nutrients into the oligotrophic subtropical gyres

**Vertical processes** (e.g. mixing and upwelling from intermediate depths)

→ New production outpaced the known vertical supply of nutrients to the subtropical gyre euphotic zone (MCGILICUDDY Jr et al. 1998; Oszlies and Garcon 1998)
Supply mechanisms of nutrients into the oligotrophic subtropical gyres

**Vertical processes** (e.g. mixing and upwelling from intermediate depths)

→ New production outpaced the known vertical supply of nutrients to the subtropical gyre euphotic zone (Mcgillicuddy Jr et al. 1998; Oschlies and Garcon 1998)

**Lateral processes**

- Recent studies have indicated the importance of lateral processes in supplying nutrients to the subtropical gyre from the neighbouring nutrient-rich subpolar gyres and tropics (e.g. Williams and Follows 1998, 2003; Oschlies 2002; Ayers and Lozier, 2010)

- Letscher et al. (2016): Showed that roughly half of the dissolved inorganic phosphate is supplied by lateral transport by using the observationally-constrained coarse-resolution model
Importance of mesoscale eddies in WBCs

WBCs: Act both as “blenders” and “barriers” for cross-frontal tracer exchanges (Bower 1985)

- **Blender:**
  - Ekman transport driven by the strong down-front westerlies (e.g. Williams and Follows 1998)
  - Mesoscale eddies due to the heightened available potential energy (e.g. Samelson 1992; Qiu et al. 2007)

- **Barrier:** Jets suppress eddy-driven mixing at the shallower depths where the speed of the jet is much faster than the propagation speed of its meanders (e.g. Bower 1985; Dufour et al. 2015)

What is the role of mesoscale motion in the lateral transport of mass and tracers into the subtropical gyres?
Goals of the study

Quantify the transport of mass, heat, carbon, and nutrients into the North Pacific and North Atlantic subtropical gyres over an annual-mean timescale using an eddy-rich model coupled to a simplified prognostic biogeochemical model (CM2.6-miniBLING)

- Assess the physical mechanisms that control the lateral transport of these tracers into the interior of the subtropical gyres all along their boundaries
- Evaluate their importance in gyre heat, DIC, and nutrient budgets
- Understand the spatial variability of these transports, as well as any contrasts that emerge between the North Atlantic and the North Pacific subtropical gyres.
Methodology
GFDL’s ocean-atmosphere model CM2.6 coupled with a simplified prognostic biogeochemical model miniBLING

- **CM2.6** (Delworth et al. 2012, Griffies et al. 2015): Resolves a large spectrum of oceanic mesoscale fluctuations with 0.1° horizontal resolution for the ocean and the sea ice components
- **miniBLING** (Galbraith et al. 2015): Three prognostic tracers – DIC, O₂, average macronutrient “PO₄” (PO₄/2+NO₃/32)
- Years 191 – 200 are used among the 200 years of preindustrial control simulation
Definition of dynamically-defined subtropical gyres

**Lateral Extent**: Monthly mean 2D barotropic mass quasi-stream function integrated over the upper 1,000 m which encloses the largest closed areal extent → *western edges aligned with jets*
- N. Pacific: 20 Sv
- N. Atlantic: 25 Sv

**Vertical Extent**: Ventilated pycnocline (Luyten et al. 1983)
- N. Pacific: $\sigma_\theta = 25.8$ kg m$^{-3}$
- N. Atlantic: $\sigma_\theta = 26.6$ kg m$^{-3}$
Decomposition of the transport into mean and eddy components (Griffies et al. 2015, Dufour et al. 2015)

The lateral transport of mass and tracer transport: \( \Phi = \rho_0 d\hat{n} \cdot \mathbf{U} \mathbf{C} \),

where \( \mathbf{U} = u d z \)

\[
\Phi_{total} = \Phi_{mean} + \Phi_{eddy} \\
\Phi_{total} = \bar{\Phi} = \rho_0 d\hat{n} \cdot \bar{U} \bar{C} \\
\Phi_{mean} = \rho_0 d\hat{n} \cdot \bar{U} \bar{C} \\
\Phi_{eddy} = \Phi_{total} - \Phi_{mean} \\
= \rho_0 d\hat{n} \cdot (\bar{U} \bar{C} - \bar{U} \bar{C})
\]

→ The eddy term is dominated by *mesoscale fluctuations* (e.g., rings, jet meanders, etc.)
Decomposition of the transport into mean and eddy components (Griffies et al. 2015, Dufour et al. 2015)

The lateral transport of mass and tracer transport: \( \Phi = \rho_0 dl \hat{n} \cdot \mathbf{U} \mathbf{C} \),

where \( \mathbf{U} = u dz \)

\[
\begin{align*}
\Phi_{total} &= \Phi_{mean} + \Phi_{eddy} \\
\Phi_{total} &= \overline{\Phi} = \rho_0 dl \hat{n} \cdot \overline{\mathbf{U} \mathbf{C}} \\
\Phi_{mean} &= \rho_0 dl \hat{n} \cdot \overline{\mathbf{U} \mathbf{C}} \tag{1} \\
\Phi_{eddy} &= \Phi_{total} - \Phi_{mean} \\
&= \rho_0 dl \hat{n} \cdot (\overline{\mathbf{U} \mathbf{C}} - \overline{\mathbf{U} \mathbf{C}}) \\
\end{align*}
\]

The eddy term is dominated by mesoscale fluctuations (e.g., rings, jet meanders, etc.)

Two key processes associated with mesoscale eddies:

1. **Eddy-induced advective transport**: Act to convert heightened APE to KE (Gent et al. 1995) *acts up-gradient/down-gradient*

2. **Down-gradient isopycnal mixing** (commonly parameterized as tracer diffusion)
Results
Cumulative sum of annual-mean cross-boundary mass and nutrients input into the subtropical gyres

jet +ve transport = mass and tracer input to the gyre

Mass [Sv]

PO4 [Gmol yr⁻¹]

northern gyre boundary

southern gyre boundary

jet
Cumulative sum of annual-mean cross-boundary mass and nutrients input into the subtropical gyres

Gulf Stream and Kuroshio:
Act as gateways for mass and tracer cross-boundary transport

+ve transport = mass and tracer input to the gyre
Cumulative sum of annual-mean cross-boundary mass and nutrients input into the subtropical gyres

**Mass:**
- Dominantly supplied by the time-mean flow
- Eddy acts to remove mass
- Heat and DIC have similar along-boundary structure

**Nutrients:**
- Mainly supplied by the eddy component
- When normalised by the gyre area, ~2 times more lateral PO4 input into N. Atlantic
Vertical profile of cross-boundary tracer transport

- Mean input occurs at the shallower depths → Ekman input
- T and DIC have very similar profiles to that of mass → Eddy component mainly dominated by the **eddy-induced advective transport**
- **PO₄ at the base of the layer is elevated** → both the mean and eddy circulation induce the larger PO₄ input/output at depths

However, mass advection cannot fully explain the behaviour of PO₄ transport
Cross-boundary tracer gradients

The down-gradient isopycnal tracer transport by the eddies:

$$\chi_c = -\rho_0 k \bar{h}(\nabla C) \cdot ndl$$

- The most enhanced gradient across Kuroshio and Gulf Stream
- DIC and PO4 supplies nutrients by the down-gradient eddy mixing
- PO4 gradient in N. Pacific (N. Atlantic) 1.5 times (10 times) larger than DIC gradient
- +ve: higher concentration outside the gyre than the inside
Cross-boundary tracer gradients

The down-gradient isopycnal tracer transport by the eddies:

\[ \chi_c = -\rho_0 k\bar{h}(\nabla C) \cdot ndl \]

Why is the PO4 gradient much larger compared to the DIC and heat counterparts?

Why is the North Atlantic PO4 gradient and the area-normalized input larger than the North Pacific?
Why is the PO4 gradient much larger compared to the DIC and heat counterparts?

- Small DIC variations relative to background concentrations
- DIC and heat air-sea flux exchange, which smooth out the lateral tracer gradients
- Near complete depletion of PO4 in the subtropical gyres nearly to the base of the ventilated layer
- Presence of Nutrient Stream (Pelegri & Csanady 1991)

Excerpted from Pelegri & Csanady 1991
Why is the North Atlantic PO4 gradient and the area-normalized input larger than the North Pacific?

• Nutrient concentration in the Gulf Stream further enriched by the waters from the tropics and Southern Ocean, in the shallow return pathway of the AMOC (Palter and Lozier, 2008) →Gulf Stream nutrient concentration 4 - 5 times larger than the Kuroshio counterpart (Guo et al. 2012)
• Greater availability of iron in the subtropical North Atlantic due to the atmospheric deposition of iron-rich Saharan dust (Mahowald et al. 2005; Sedwick et al. 2005)
The importance of the lateral tracer transport in the respective subtropical gyre budget

**DIC**: Almost entirely supplied by the time-mean lateral transport, with 1/3 removed by the eddy

**PO4**: Dominantly supplied by the eddy component. Lateral transport explains > ¾ of the total supply

**Heat**: Eddy removal is in the same order of magnitude as air-sea heat flux → importance for the climate
Conclusion

Evaluation of lateral transport of mass, heat, carbon, and nutrients into the North Pacific and North Atlantic subtropical gyres, with a preindustrial simulation of an eddy-rich ocean-atmosphere model coupled with a simplified biogeochemistry model (CM2.6-miniBLING)

- Kuroshio and Gulf Stream act as main mass and tracer exchange gateways

- Mass, DIC and heat are supplied dominantly by the time-mean circulation, with the eddy component acts to remove them from the subtropical gyres (eddy-induced advective transport)

- PO4 is supplied primarily by the eddy component

- Lateral transport of PO4 explains >3/4 of the total gyre PO4 supply: roughly 1.5 times larger than the previous estimate by Letscher et al. (2016)