Online Data Sharing Platform

Purpose:
- Chla, phytoplankton biomass and zooplankton communities in North (>60°N)
 - Spatial variation
 - Interannual variation
 - Variations between warm and cold phases

Access:
- https://researchworkspace.com/campaign/2585494/chukchi-bering-international-research
 - Spatial variation
 - Interannual variation
 - Variations between warm and cold phases
Lisa added 14 files.

Manuscript & Data Archive
- Manuscripts
 - Siddon_fsx123_Supp_Table...
 - Siddon_fsx123_Supp.pptx
 - Siddon_et_al_2017ICES.pdf
- And 11 more...

Stacey updated a file.

Exploring climate normals and anomalies using the Chukchi–Beaufort High-Resolution Atmospheric Reanalysis (CBHAR) model
Seasonal, interannual, and spatial patterns of community composition over the eastern Bering Sea shelf in cold years. Part II: ichthyoplankton and juvenile fish

Elizabeth C. Siddon1*, Janet T. Duffy-Anderson2, Kathryn L. Mier3, Morgan S. Busby2, and Lisa B. Eisner4

1National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Alaska Fisheries Science Center, Ted Stevens Marine Research Institute, Ecosystem Monitoring and Assessment Program, 17109 Pt. Lena Loop Road, Juneau, AK 99801, USA
2National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Alaska Fisheries Science Center, Resource Assessment and Conservation Engineering Division, Fisheries-Oceanography Coordinated Investigations Program, 7600 Sand Point Way NE, Seattle, WA 98115-6949, USA
3*Corresponding author: tel. 907 789 6055; fax: 907 789 6096; e-mail: elizabeth.siddon@noaa.gov.

Received 19 December 2016, revised 2 May 2017, accepted 8 June 2017.

Climate-mediated oceanographic changes have led to protracted periods of above- or below-average water temperatures over the eastern Bering Sea since the early 2000s. Ecosystem components, from phytoplankton to marine birds, have shown dichotomous responses to these temperature anomalies. Understanding within-stanza responses is fundamental to modelling efforts that project ecosystem responses under future climate scenarios. This study describes fish communities associated with Walleye Pollock during the age-0 period and also examines ichthyoplankton and juvenile fish community composition over the eastern Bering Sea shelf.
Lisa added 14 files.

Manuscript & Data Archive

- Manuscripts
 - Siddon_fsx123_Supp_Table...
 - Siddon_fsx123_Supp.pptx
 - Siddon_et_al_2017ICES.pdf

And 11 more...

Stacey updated a file.

Exploring climate normals and anomalies using the Chukchi–Beaufort High-Resolution Atmospheric Reanalysis (CBHAR) model
<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Uploaded By</th>
<th>Updated</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-plot-wind-vectors-from-grid.ipynb</td>
<td>2.1 MB</td>
<td>Stacey Buckelewel</td>
<td>Aug 08</td>
</tr>
<tr>
<td>4-plot-time-series-CBHAR.ipynb</td>
<td>202.1 kB</td>
<td>Will Koeppen</td>
<td>Aug 07</td>
</tr>
<tr>
<td>3-climate-normals-from-monthly-averages.ipynb</td>
<td>182.6 kB</td>
<td>Will Koeppen</td>
<td>Aug 04</td>
</tr>
<tr>
<td>2-monthly-averages-from-CBHAR-gluster.ipynb</td>
<td>137.1 kB</td>
<td>Will Koeppen</td>
<td>Aug 04</td>
</tr>
</tbody>
</table>
Plotting wind vectors from CBHAR

Purpose

This demonstration notebook plot wind speed and direction from a grid in a variety of ways including the following:

- wind speed as an unprojected colormap
- wind flow vector arrows, colorized by speed
- wind barbs, colorized by speed
- wind barbs over unprojected colormap of wind speed
- wind barbs over projected map of wind speed with a coastline

Inputs

This notebook uses a time slice from the Chukchi Beaufort High-resolution Atmospheric Reanalysis (CBHAR) 1979-2009 dataset provided to the public by the Bureau of Ocean and Energy Management through AOOS:

Outputs

For these examples, all output plots are published to the screen only.

Modification History

2017-07-07: Original script moved into Research Workspace (W. Koeppen, Axiom)