Abundance of Marine Debris Estimated from Hawai‘i Longline Observer Data

Amy V. Uhrin
NOAA Marine Debris Program

William Walsh1 and Jon Brodziak2
1Walsh Analytical Service
2NOAA Pacific Islands Fisheries Science Center

\textit{PICES Annual Meeting - Marine Environmental Quality Session}
\textbf{October 25, 2019}
Acknowledgements

Funding:
NOAA Marine Debris Program
Pacific Islands Fisheries Science Center
National Marine Sanctuaries Foundation

Eric Forney, Pacific Islands Region Observer Program
John Peschon, Pacific Islands Region Observer Program
Fisheries observers, Pacific Islands Region Observer Program
Mark Manual, NOAA Marine Debris Program
Christy Kehoe, NOAA Marine Debris Program
Stephanie Kung, University of Hawai‘i
Hawai‘i-based Pelagic Longline Fishery

<table>
<thead>
<tr>
<th>Deep Sector</th>
<th>Shallow Sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Bigeye tuna</td>
<td>• Swordfish</td>
</tr>
<tr>
<td>• 2400 hooks per set</td>
<td>• 1000 hooks per set</td>
</tr>
<tr>
<td>• 243m depth</td>
<td>• 64m depth</td>
</tr>
<tr>
<td>• 20 hour soak</td>
<td>• 20 hour soak</td>
</tr>
<tr>
<td>• Below 30°N</td>
<td>• Above 30°N</td>
</tr>
<tr>
<td>• Deploy after dawn</td>
<td>• Deploy at sunset</td>
</tr>
<tr>
<td>• Annual</td>
<td>• Winter</td>
</tr>
</tbody>
</table>

Artwork: Les Hata © Secretariat of the Pacific Community
Hawai‘i-based Pelagic Longline Fishery

North Pacific Ocean
Hawai‘i-based Pelagic Longline Fishery
NOAA Pacific Islands Region Observer Program

• Onboard longline observations initiated 1994
 o priority focus on longline gear and protected species interactions
 o shallow sector: 100% coverage; deep sector: 20%

• Marine debris longline observations initiated late 2007
 o report interactions with longline gear, vessel, species, at surface
Objective

• To estimate marine debris abundance using GLM to standardize CPUE as previously used for bycatch and incidental catch
Counts of marine debris per set

1. net
2. rope/line
3. monofilament
4. metal
5. cloth
6. plastic sheeting/tarp
7. floats buoys
8. FAD
9. other
10. lumber
11. natural
Generalized Linear Model to Standardize CPUE

• Zero-inflated negative binomial model
 • overdispersed count data
 • extra zeros from reporting error or survey error (or both)
 • 2 components: positive counts & probability of extra zeros
 • offset = number of hooks per set

• Predictor variables
 • year (2008-2016)
 • quarter (1st – 4th)
 • sector (shallow, deep)
 • observer type (high, low)
 • convergence zone (in, out)
 • begin-set latitude
 • begin-set longitude
 • fishing region (6)
 • total catch
 • soak duration

• Sampling unit = individual longline set (N = 40,572)
 • # sets deep: 32,130
 • # sets shallow: 8,442
How Much & What Type

- 858 sets with debris
 - 418 deep
 - 440 shallow
- 1326 total items
 - 51.8% net
 - 26.7% rope, line
- 1.2 - 1.6 items per set
 - min: 1
 - max: 9

In revision, Nature Scientific Reports
Model Selection

Negative binomial count model - positive counts

<table>
<thead>
<tr>
<th>Parameter</th>
<th>df</th>
<th>AIC</th>
<th>ΔAIC</th>
<th>ΔAIC/df</th>
<th>Median residual</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>10439.22</td>
<td>.</td>
<td>.</td>
<td>-0.1162</td>
<td>0.1912</td>
</tr>
<tr>
<td>Year</td>
<td>8</td>
<td>10328.39</td>
<td>110.82</td>
<td>13.85</td>
<td>-0.1140</td>
<td>0.0215</td>
</tr>
<tr>
<td>Quarter</td>
<td>3</td>
<td>10218.97</td>
<td>109.42</td>
<td>36.47</td>
<td>-0.1183</td>
<td>0.1527</td>
</tr>
<tr>
<td>Sector</td>
<td>1</td>
<td>9628.69</td>
<td>590.28</td>
<td>590.28</td>
<td>-0.1174</td>
<td>0.0414</td>
</tr>
<tr>
<td>Latitude</td>
<td>1</td>
<td>9293.10</td>
<td>335.60</td>
<td>335.60</td>
<td>-0.1145</td>
<td>0.0529</td>
</tr>
</tbody>
</table>

Logistic model for zero inflation - odds of extra zeros

<table>
<thead>
<tr>
<th>Parameter</th>
<th>df</th>
<th>AIC</th>
<th>ΔAIC</th>
<th>ΔAIC/df</th>
<th>Median residual</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitude</td>
<td>1</td>
<td>9206.19</td>
<td>86.91</td>
<td>86.91</td>
<td>-0.1118</td>
<td>0.1498</td>
</tr>
<tr>
<td>Convergence zone</td>
<td>1</td>
<td>9184.95</td>
<td>21.24</td>
<td>21.24</td>
<td>-0.1130</td>
<td>0.1824</td>
</tr>
<tr>
<td>Observer</td>
<td>1</td>
<td>8819.69</td>
<td>365.26</td>
<td>365.26</td>
<td>-0.0966</td>
<td>0.5098</td>
</tr>
<tr>
<td>Sector</td>
<td>1</td>
<td>8786.13</td>
<td>33.56</td>
<td>33.56</td>
<td>-0.0925</td>
<td>0.8377</td>
</tr>
</tbody>
</table>
Results

Neg binomial count model: expected positive counts per set

- Increasing debris through 2011, decreasing thereafter
- Less debris in Q3 (July - September)
- Less debris in deep sector (40.5% ↓ in positive counts)
- More debris moving north (12% ↑ in positive counts for 1° ↑ in latitude)

In revision, Nature Scientific Reports
Logistic zero-inflation model: odds of zero counts per set

- More debris moving east (5% ↓ in odds for 1° ↓ in longitude)
- More debris inside convergence zone (56% ↓ in odds)
- More debris reported by experienced observers (79% ↓ in odds)
- Less debris in deep sector (127% ↑ in odds)
Annual Standardized CPUE

$R^2_{\text{adj}} = 0.95$
Annual Standardized CPUE By Sector

- Shallow sector
- Deep sector

Marine Debris Items Per Set vs. Year (2006-2018)
Key Findings

• Prevalence of derelict nets in STCZ & moving towards EPGP
 o consistent with model trajectories of surface drifters

• Debris likely snagged close to the surface
 o nets composed of buoyant polymers
 o net bundles float with some draft

• More debris in shallow sector despite less effort
 o overlap with surface & depth distribution of debris
 o target shallow sector for observations & removal

• Steady decline in marine debris over time
 o global moratorium on large-scale pelagic driftnets
 o organized removal from nearshore
 o some removal by fishermen
 o post-tsunami fleet reduction