Jellyfish blooms in coastal waters nearby thermal discharges of nuclear power plant
Chunjian Guan, Yongjian Liu, Chuan Jia
National Marine Environmental Monitoring Center, Dalian, China.
E-mail: cjqguan@nmemc.org.cn;

1 Introduction

There is one Nuclear Power Station, which was constructed in 2007 and began to operate in 2013, is located in Liaodong Bay of Bohai Sea, China. In order to study the long-term effects of the thermal discharges on marine organisms, community structure and ocean ecosystem in coastal waters, long-term monitoring of marine organisms in the area with water outlet as the center and the radius of 4.0 km was carried out. In 2010, before the discharge of thermal waste water by the nuclear power plant, the maximum abundance of *Aurelia aurita* in this area, a common jellyfish species in the Bohai Sea, was recorded as 533 ind. /net-h. Thereafter the frequency of jellyfish bloom in this area has been increased. In 2014, jellyfish bloom of *Aurelia aurita* clogged the sea water intake and reduced the production efficiency of nuclear power plant.

2 Discussion

We collected the jellyfish data surveyed in the thermal discharge area (Figure 1). With anchor network (Figure 2), which belongs to fixed network, is 8 meter height 60 meter length of net clothing, and the mesh size is 10 centimeter. The mesh is vertically down the network with the direction of tidal current, and up with flow when sampling operation. Since the large biomass of large jellyfish in the thermal discharge sea area, the monitoring sampling time is 30 min.

![Fig. 1 Jellyfish sampling stations](image1)

![Fig. 2 Anchor network operation schematic](image2)

The number of *Aurelia aurita* decreased year by year(Fig3, Table1), but the number of *Stomolophus meleagris* increased during the year of 2015 to 2018(Fig4).

<table>
<thead>
<tr>
<th>Year</th>
<th>Peak period time</th>
<th>Maximum abundance ind/(net h)</th>
<th>Average umbrella diameter (cm)</th>
<th>Average wet weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>late June–Mid August</td>
<td>12353</td>
<td>14.7</td>
<td>170</td>
</tr>
<tr>
<td>2016</td>
<td>July–Mid August</td>
<td>16667</td>
<td>17.9</td>
<td>360</td>
</tr>
<tr>
<td>2017</td>
<td>August</td>
<td>380</td>
<td>17.7</td>
<td>262.7</td>
</tr>
<tr>
<td>2018</td>
<td>late June–Mid August</td>
<td>9188</td>
<td>19.7</td>
<td>370</td>
</tr>
</tbody>
</table>

Table 1 The *Aurelia aurita* surveyed data from 2015 to 2018

![Fig.3 The number of Aurelia aurita and Stomolophus meleagris relative biomass(2015-2018)](image3)

In 2010, before the nuclear power operation, the maximum abundance of *Aurelia aurita* was 533 ind./(net*h).

![Fig.4 The number of Aurelia aurita biomass(g,2009/6/25-7/2 h,2010/6/24-30)](image4)

3 Conclusion

The average results in the past four years showed that maximum abundance of *Aurelia aurita* was about 18 times of that in 2010. Long-term monitoring and comparatively analysis of the structure and function of marine organisms, biological communities and ecosystems, before and after the operation of nuclear power plants, are crucial for rectangle the relationship between the marine ecosystem and the thermal water discharge. And it may be an ideal ‘stress-tests’ system for studying the impacts of climate change on marine ecosystems.