Challenges and Progress in the Development of a Circulation Model for the Central West Coast of Vancouver Island

Mike Foreman¹, Peter Chandler¹, Di Wan¹, Pramod Thupaki², Maxim Krassovski¹, Laura Bianucci¹, Glenn Cooper¹

¹Institute of Ocean Sciences, Fisheries and Oceans Canada
²Hakai Institute, Calvert Island BC

PICES 2019, October 24
With valuable contributions from:

Michael Dunphy, David Spear, Hauke Blanken
IOS

Yuehua Lin
ASL Environmental Sciences

J.-P. Paquin, Ruping Mo
Environment & Climate Change Canada

Youyu Lu, Stephanne Taylor
Bedford Institute of Oceanography, Fisheries and Oceans Canada

Grieg Seafood & Cermaq Canada

Aquaculture Collaborative Research & Development Program
DFO
Outline:

1. Motivation for the Vancouver Island coastal model
2. Differences/challenges from ocean models
3. Model & observation details
4. Interesting (& complex) dynamics & preliminary model results
5. Summary & future work
Motivation for our Coastal Model

- Develop ocean circulation & particle-tracking models to help address aquaculture issues along the central west coast of Vancouver Island
 - Dispersion of parasites & pathogens between salmon farms & from farms to wild species
 - Advice on future farm siting to minimize connectivity & environmental impacts
- Assist industry in understanding & predicting adverse environmental conditions
Similar models have been developed in green & yellow regions & will be presented in S3

Red region is our model domain
Salmon Farms are open net cages

- Free exchange of small “particles” with neighbouring ocean
- Approx. $210 \times 60 \times 20$ m
 - Can hold up to 500K fish
Key differences between coastal & deep ocean models

1. Coastal models need
 a. Higher spatial resolution in:
 • Coastline & bathymetry
 • Atmospheric forcing fields (wind & heat flux)
 b. Accurate open boundary forcing (from a larger domain model)
 c. Fresh water discharge forcing (volume flux, temperature, salinity, biogeochemistry)
 d. Observations for model assimilation and/or evaluation
 • smaller scale spatial features

2. Numerics that
 a. Solve hydrodynamic equations on a grid incorporating 1a,b,c
 b. Accurately reproduce relevant physics (e.g., preserve freshwater plumes & near-surface stratification)
Observation Locations

12 ADCP & Microcat (CTD) moorings, 5 lighthouses, 2 Environment Canada weather buoys
1. **Physical circulation model:** FVCOM
 - *Finite Volume Community Ocean Model* (Chen et al., 2006)
 - *Standard 4D hydrodynamics & salinity/temperature advection/dispersion on an unstructured grid*
 - Approx 138K triangles; horizontal resolution: 60m to 9km
 - 21 sigma-coordinate layers in vertical; smaller thickness near surface

2. **Simple “biological” model:**
 - Non-passive offline particle tracking
 - Use saved 4D velocity, salinity, temperature & mixing fields from FVCOM + UV radiation (IHN virus)
 - transport and develop/kill viruses or sea lice (egg thru to copepodid life stages)

3. **More complex “biological” models in S3**
 - Include biogeochemistry and/or lower trophic levels
 - Wei, Bianucci, Peña, Holdsworth, Allen, Olson, Pilcher
Need to capture irregular coastline, variable bathymetry with high resolution grid

- Bathymetry from multi-beam sonar data (5m horizontal resolution)
 - if mudflats, then LIDAR data in the wetting-drying zones is desirable
- improves tides at Kennedy Cove
Highly Variable Bathymetry

- Banks & canyons on shelf
- Mudflats to over 300m in inlets
Atmospheric Forcing

Environment and Climate Change Canada LAMWEST "HRDPS" 2.5 km weather model
- sample pressure (Pascals), surface temperature (°K) & wind fields
Atmospheric Forcing

- 2.5 km horizontal resolution insufficient to resolve orographic steering winds in many coastal inlets
 - E.g., Muchalat is 1.2 to 2.0 km wide
- Need to improve by either
 - combining with weather station observations
 - or await new 1km HRDPS model (presently pre-operational)

Sample 10m winds from 1km HRDPS. Courtesy of Maher BenMansaur.
Open Boundary Forcing:
Northeast Pacific NEMO model (NEP36, DFO/ECCC)

- Rectangular grid cells with 1/36° resolution
 - approx 2km in EW at 49° N
 - Coastal inlets poorly resolved
 - Limited river discharges
 - Atmospheric forcing = 2.5km HRDPS

- Pre-operational test runs for Nov 2015 to Jan 2019

- More details in Hannah/Lu talk at 11:20 today

- Presently extracting hourly sea surface height, and 3D temperature & salinity along red open boundary of our model

- Lin (today at 11:00) nests his regional model in NEP36
 - Also takes 3D velocities

NEP36 domain & bathymetry
How accurate is NEP36 within our domain?

Compare with low-pass filtered, along shelf observed currents at mooring E01, March 1 to July 11, 2016

Top: ADCP observed
Bottom: NEP36
How accurate are the NEP36 Tidal Elevations? Compare at 4 offshore bottom pressure sites

<table>
<thead>
<tr>
<th>constituent</th>
<th>Amp ratio</th>
<th>Phase dif°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>0.984</td>
<td>0.08</td>
</tr>
<tr>
<td>O1</td>
<td>0.994</td>
<td>0.30</td>
</tr>
<tr>
<td>P1</td>
<td>1.012</td>
<td>-0.20</td>
</tr>
<tr>
<td>K1</td>
<td>1.008</td>
<td>0.83</td>
</tr>
<tr>
<td>N2</td>
<td>1.020</td>
<td>4.48</td>
</tr>
<tr>
<td>M2</td>
<td>1.005</td>
<td>3.70</td>
</tr>
<tr>
<td>S2</td>
<td>1.002</td>
<td>5.10</td>
</tr>
<tr>
<td>K2</td>
<td>0.985</td>
<td>2.95</td>
</tr>
</tbody>
</table>

- Amplitude ratio = NEP36/observed
- Phase difference = NEP36 - observed

Conclusion:
- Diurnal amplitudes & phases pretty good!
- Semi-diurnal phases too late by 3° – 5° (6 – 10 minutes)
 - We may replace with our own tidal forcing?
Discharges primarily rainfall dominated
 - Episodic storms in winter; dry in summer

More on role of rivers in Miyama S3 talk at 12:00

- 29 rivers included but only 5 had their discharges measured by WSC in 2016
- estimate others based on historical discharge ratios (if possible) or ratios of watershed areas
- also need discharge temperature & salinity
 - seldom measured so estimate either from observations
 - in inlet near river mouth, or
 - a nearby fish farm
Using watershed area ratios assumes similar runoff characteristics
 • E.g., elevations, ground water storage, precipitation in rainfall vs snowfall, ...

To improve, we need more discharge observations or a hydrology model
Clayoquot region has much stronger tidal currents than Nootka-Esperanza.

- Spring-neap cycle important in mixing & regulating estuarine flow?
- Model not right yet!

Low-pass filtered ADCP profile (top), model (middle), & near surface observed currents (bottom).
• **CYP1 low pass filtered**
• **Positive velocity is eastward**
 • *x*-axis tick separation is 7 days
• **Some spring-neap modulation of estuarine flow?**
 • **Freshwater from Bedwell Inlet**
ZUC1 bottom temperature & salinity show sharp changes on May 9, 2016

Spike in low-pass filtered up-channel bottom currents

Compensating near surface flows
- 2 days of sustained winds around 15 m/s from the NW
 - decrease quickly to approx no wind
 - precede the ZUC1 bottom intrusion

- WDIR is direction from where wind is blowing, clockwise from north
ZUC1 low-pass filtered bottom pressures (proxy for SSH)

- "surge" of water moving by ZUC1 starting 000 May 9
 - 29cm SSH rise (low-pass) over 2 days; another 8cm by May 15
- **Hypothesis:**
 - Sustained strong winds to SE bring upwelled water onto the shelf & create a depression in SSH adjacent the coast
 - If the winds shut-off quickly, water flows coastward to adjust & "surge" moves up Nootka Sound & (probably?) into Muchalat Inlet
 - Yet to be replicated with model simulations ...
Interesting Dynamics 3: River Plume Simulations

Surface salinity March 1-8, 2016
3 hour intervals

Gold River discharge (WSC)
March 2016

SALINITY

28
26
24
22
20
18
16
14
12
10
8
6
4

Muchalat Inlet

Burman River
How accurate are the model plumes? Compare with near-surface TS observations at 16 farms

Average March 6–30, 2016 observed and model temperatures (°C) and salinities (psu) at 1m depth.
- Average abs(differences) are 0.4° and 3.3 psu
- Model temperatures good but model salinities are generally too salty
 - Combination of too much mixing, inaccurate river discharges, missing rivers,… ?

<table>
<thead>
<tr>
<th>Farm #</th>
<th>Temperature</th>
<th>Salinity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>observed</td>
<td>model</td>
</tr>
<tr>
<td>1</td>
<td>8.6</td>
<td>9.1</td>
</tr>
<tr>
<td>2</td>
<td>9.3</td>
<td>8.8</td>
</tr>
<tr>
<td>3</td>
<td>9.1</td>
<td>9.0</td>
</tr>
<tr>
<td>4</td>
<td>9.2</td>
<td>8.8</td>
</tr>
<tr>
<td>5</td>
<td>9.3</td>
<td>8.8</td>
</tr>
<tr>
<td>6</td>
<td>10.3</td>
<td>9.0</td>
</tr>
<tr>
<td>7</td>
<td>9.3</td>
<td>8.7</td>
</tr>
<tr>
<td>8</td>
<td>8.6</td>
<td>8.9</td>
</tr>
<tr>
<td>9</td>
<td>9.1</td>
<td>8.9</td>
</tr>
<tr>
<td>10</td>
<td>9.1</td>
<td>8.8</td>
</tr>
<tr>
<td>11</td>
<td>9.0</td>
<td>8.9</td>
</tr>
<tr>
<td>12</td>
<td>8.9</td>
<td>9.0</td>
</tr>
<tr>
<td>13</td>
<td>8.6</td>
<td>8.5</td>
</tr>
<tr>
<td>14</td>
<td>8.5</td>
<td>8.5</td>
</tr>
<tr>
<td>15</td>
<td>9.2</td>
<td>8.6</td>
</tr>
<tr>
<td>16</td>
<td>9.2</td>
<td>8.6</td>
</tr>
</tbody>
</table>
• Eastward daily sea breeze causes daily oscillations in 5m temperatures
 • June 21 range: 15.5° to 10°
 • Twice daily temp observations (aliased) suggest 10° water came from below
 • Similar large oscillations in dissolved oxygen

• on June 27-30, wind changes
 • 5m temp reaches minimum on 27\(^{th}\) & stays there for 3-4 days before resuming daily pattern by Jul 1\(^{st}\)
 • 1m temp doesn’t show this drop

• Yet to be reproduced with model simulations
Summary & Future Work

- Coastal ocean modelling has unique challenges/needs:
 a) Grid that resolves irregular coastlines & variable bathymetry
 b) High resolution atmospheric forcing
 c) Accurate open boundary forcing
 d) Freshwater water discharges (volume flux, temperature, salinity, biogeochemistry)
 e) Numerics that can
 i. incorporate a) & preferably mudflats
 ii. accurately reproduce relevant physics

- Interesting (& complex) dynamics:
 a) Spring-neap variations in estuarine flow,
 b) Density intrusions,
 c) Freshwater plumes,
 d) Internal waves.

- Future work:
 a) Complete FVCOM simulations for March to July 2016
 b) Better simulate & understand "interesting physics" features
Thanks for your interest!

Session S3 starts at 10:50 in Saanich 1