Seasonal-interannual prediction of sea surface height using an ocean-atmosphere dynamical model “SINTEX-F”

Takeshi Doi, Masami Nonaka, Swadhin K. Behera
(APL/VAiG/JAMSTEC)

PICES2019
Motivation
Motivation

Impacts of extreme sea levels include
Motivation

Impacts of extreme sea levels include

- inhibition of primary production processes,
- loss of amenities
- loss of property, cultural resources and values,
- loss of tourism, recreation and transportation functionality
- increased risk of loss of life
Motivation

Impacts of extreme sea levels include:

- inhibition of primary production processes,
- loss of amenities,
- loss of property, cultural resources and values,
- loss of tourism, recreation and transportation functionality,
- increased risk of loss of life

(Nicholls et al. 2007)
Motivation

Impacts of extreme sea levels include

- inhibition of primary production processes,
- loss of amenities
- loss of property, cultural resources and values,
- loss of tourism, recreation and transportation functionality
- increased risk of loss of life

In addition to the input from the increasing global trend (e.g. IPCC reports), extreme sea level events are also influenced by the El Niño/Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD), and so on.
Motivation

Impacts of extreme sea levels include:

- inhibition of primary production processes,
- loss of amenities
- loss of property, cultural resources and values,
- loss of tourism, recreation and transportation functionality
- increased risk of loss of life

In addition to the input from the increasing global trend (e.g. IPCC reports), extreme sea level events are also influenced by the El Niño/Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD), and so on.

(Nicholls et al. 2007).

(Lombard et al. 2005).
Motivation

Impacts of extreme sea levels include:

- inhibition of primary production processes,
- loss of amenities
- loss of property, cultural resources and values,
- loss of tourism, recreation and transportation functionality
- increased risk of loss of life

(Nicholls et al. 2007).

In addition to the input from the increasing global trend (e.g. IPCC reports), extreme sea level events are also influenced by the El Niño/Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD), and so on

(Lombard et al. 2005).

Skillful seasonal-interannual forecast is necessary to reduce the risks!
So far... (to the best of our knowledge)
So far... (to the best of our knowledge)

The study by Miles et al. (2014) was an initial attempt to apply a dynamical coupled ocean-atmosphere model to the prediction of seasonal sea level anomalies globally for up to 7 months in advance.
So far... (to the best of our knowledge)

The study by Miles et al. (2014) was an initial attempt to apply a dynamical coupled ocean–atmosphere model to the prediction of seasonal sea level anomalies globally for up to 7 months in advance.

The skill is derived from the ability to predict ENSO accurately, and is in the oceanic Kelvin, Rossby, coastally-trapped waveguides extending from the Pacific equatorial region (McIntosh et al. 2015).
So far... (to the best of our knowledge)

- The study by Miles et al. (2014) was an initial attempt to apply a dynamical coupled ocean-atmosphere model to the prediction of seasonal sea level anomalies globally for up to 7 months in advance.

- The skill is derived from the ability to predict ENSO accurately, and is in the oceanic Kelvin, Rossby, coastally-trapped waveguides extending from the Pacific equatorial region (McIntosh et al. 2015).
Key questions to seasonal prediction of sea level anomalies
Key questions to seasonal prediction of sea level anomalies

- Is it possible beyond 7-month lead time?
Key questions to seasonal prediction of sea level anomalies

- Is it possible beyond 7-month lead time?
- Should it be considered as a new type of information beyond the common climate prediction information such as sea surface temperature?
Key questions to seasonal prediction of sea level anomalies

- Is it possible beyond 7-month lead time?
- Should it be considered as a new type of information beyond the common climate prediction information such as sea surface temperature?
- Are there any new potential sources of its predictability excluding ENSO impacts?
Schematic of numerical seasonal prediction: “baton pass”
Schematic of numerical seasonal prediction: “baton pass”
Schematic of numerical seasonal prediction: "baton pass"

1. "Observation" for the current state
Schematic of numerical seasonal prediction: “baton pass”

1. “Observation” for the current state

2. Initialization (assimilation)

\[x(t_0) + \Delta t \times M = X(t_0 + \Delta t) \]
Schematic of numerical seasonal prediction: “baton pass”

1. “Observation” for the current state

2. Initialization (assimilation)

3. Numerical integration by a model

\[x(t_0) + \Delta t \times M = X(t_0 + \Delta t) \]
Schematic of numerical seasonal prediction: “baton pass”

1. “Observation” for the current state

2. Initialization (assimilation)

3. Numerical integration by a model

\[x(t_0) + \Delta t \times M = X(t_0 + \Delta t) \]

Prediction of future
Schematic of numerical seasonal prediction: “baton pass”

1. “Observation” for the current state

2. Initialization (assimilation)

3. Numerical integration by a model

\[x(t_0) + \Delta t \times M = X(t_0 + \Delta t) \]

Satellites are helpful for globally, continuously monitoring.
Schematic of numerical seasonal prediction:
"baton pass"

1. "Observation" for the current state

2. Initialization (assimilation)

3. Numerical integration by a model

Prediction of future

\[x(t_0) + \Delta t \times M = X(t_0 + \Delta t) \]

Use grids of "cell" for the Earth

Calculate partial differential eq.

Satellites are helpful for globally, continuously monitoring.
The SINTEX-F1 numerical/dynamical seasonal prediction system (Luo et al. 2005) (developed at JAMSTEC under the EU-Japan collaboration)
The SINTEX-F1 numerical/dynamical seasonal prediction system (Luo et al. 2005) (developed at JAMSTEC under the EU-Japan collaboration)

<table>
<thead>
<tr>
<th>SINTEX-F1</th>
<th>AGCM</th>
<th>OGCM</th>
<th>Coupling</th>
<th>Sea Ice cover</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ECHAM4.6</td>
<td>OPA8.2</td>
<td>Every 2 hour</td>
<td>restoring obs. climatology</td>
</tr>
<tr>
<td></td>
<td>T106L19</td>
<td>2×(0.6~2) L31</td>
<td>No flux correction</td>
<td></td>
</tr>
</tbody>
</table>
The SINTEX-F1 numerical/dynamical seasonal prediction system (Luo et al. 2005) (developed at JAMSTEC under the EU-Japan collaboration)

<table>
<thead>
<tr>
<th></th>
<th>AGCM</th>
<th>OGCM</th>
<th>Coupling</th>
<th>Sea Ice cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>SINTEX-F1</td>
<td>ECHAM4.6 T106L19</td>
<td>OPA8.2 2×(0.6~2) L31</td>
<td>Every 2 hour No flux correction</td>
<td>restoring obs. climatology</td>
</tr>
</tbody>
</table>

- Initialization: SST-nudging scheme
- 9 ensemble members
- {3 nudging strengths × 3 physical schemes (wind-ocean current)}
The SINTEX-F1 numerical/dynamical seasonal prediction system (Luo et al. 2005) (developed at JAMSTEC under the EU-Japan collaboration)

<table>
<thead>
<tr>
<th>SINTEX-F1</th>
<th>AGCM</th>
<th>OGCM</th>
<th>Coupling</th>
<th>Sea Ice cover</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ECHAM4.6 T106L19</td>
<td>OPA8.2 2×(0.6~2) L31</td>
<td>Every 2 hour No flux correction</td>
<td>restoring obs. climatology</td>
</tr>
</tbody>
</table>

- Initialization: SST-nudging scheme
- 9 ensemble members
 - {3 nudging strengths × 3 physical schemes (wind-ocean current)}

- The SINTEX-F1 system is very skillful at predicting ENSO (Luo et al. 2005; 2008; 2017, etc) and IOD events (Luo et al. 2007; Luo et al 2008, GRL).
The SINTEX-F1 numerical/dynamical seasonal prediction system (Luo et al. 2005) (developed at JAMSTEC under the EU-Japan collaboration)

<table>
<thead>
<tr>
<th></th>
<th>AGCM</th>
<th>OGCM</th>
<th>Coupling</th>
<th>Sea Ice cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>SINTEX-F1</td>
<td>ECHAM4.6 T106L19</td>
<td>OPA8.2 2×(0.6~2) L31</td>
<td>Every 2 hour No flux correction</td>
<td>restoring obs. climatology</td>
</tr>
</tbody>
</table>

- Initialization: SST-nudging scheme
- 9 ensemble members
- \{3 nudging strengths \times 3 physical schemes (wind-ocean current)\}

- The SINTEX-F1 system is very skillful at predicting ENSO (Luo et al. 2005; 2008; 2017, etc) and IOD events (Luo et al. 2007; Luo et al 2008, GRL).
- Real-time prediction has been provided via our website
The SINTEX-F1 numerical/dynamical seasonal prediction system (Luo et al. 2005) (developed at JAMSTEC under the EU-Japan collaboration)

<table>
<thead>
<tr>
<th>AGCM</th>
<th>OGCM</th>
</tr>
</thead>
<tbody>
<tr>
<td>SINTEX-F1</td>
<td>ECHAM4.6 T106L19 OPA8.2 2 × (0.6~2) L31</td>
</tr>
</tbody>
</table>

- Initialization: SST-nudging scheme
- 9 ensemble members
 - 3 nudging strengths × 3 physical schemes (wind-ocean current)
- The SINTEX-F1 system is very skillful at predicting ENSO (Luo et al. 2005; 2008; 2017, etc) and IOD events (Luo et al. 2007; Luo et al 2008, GRL).
- Real-time prediction has been provided via our website.
Skill assessment is

- Based on anomaly correlation coefficient (ACC) between obs. and re-forecast output.
- Re-forecast period: issued of the first date of every month in years 1993-2010
- Reference data: AVISO+ data in 1993-2010
- Monthly climatology in 1993-2009
- Anomaly (deviation from monthly climatology) is linearly detrended
Diff'rence in ACC between SSH and SST predictions

(a) Mar. 1st ini.
(b) Jun. 1st ini.
(c) Sep. 1st ini.
(d) Dec. 1st ini.

Lead month (1.5-2.5 month)

Maskout for low skill of SSH (ACC<0.5)
Q1. Is it possible beyond 7-month lead time?
Q1. Is it possible beyond 7-month lead time?

A1. We found that the skillful prediction regions in the North Pacific (30°-40°N, 180°W-160°W), off the west coast of Australia and California, and western tropical Atlantic, up to 18-month lead time.
Q1. Is it possible beyond 7-month lead time?

A1. We found that the skillful prediction regions in the North Pacific (30–40N, 180W-160W), off the west coast of Australia and California, and western tropical Atlantic, up to 18-month lead time.

Q2. Should it be considered as a new type of information beyond the common climate prediction information such as sea surface temperature?
Q1. Is it possible beyond 7-month lead time?

A1. We found that the skillful prediction regions in the North Pacific (30–40N, 180W–160W), off the west coast of Australia and California, and western tropical Atlantic, up to 18-month lead time.

Q2. Should it be considered as a new type of information beyond the common climate prediction information such as sea surface temperature?

A2. Yes. SSH prediction skill is high relative to SST prediction skill over the Pacific warm pool region in DJF about 5 month-lead, some regions in the North Pacific (30–40N, 180W–160W) beyond 12 month-lead, off the west coast of the South American Continent around 7-9 month lead time. Higher prediction skill of SSH than that of SST may suggest that ocean dynamical process is more importance relative to thermodynamical process in those regions.
Q1. Is it possible beyond 7-month lead time?

A1. We found that the skillful prediction regions in the North Pacific (30-40N, 180W-160W), off the west coast of Australia and California, and western tropical Atlantic, up to 18-month lead time.

Q2. Should it be considered as a new type of information beyond the common climate prediction information such as sea surface temperature?

A2. Yes. SSH prediction skill is high relative to SST prediction skill over the Pacific warm pool region in DJF about 5 month-lead, some regions in the North Pacific (30-40N, 180W-160W) beyond 12 month-lead, off the west coast of the South American Continent around 7-9 month lead time. Higher prediction skill of SSH than that of SST may suggest that ocean dynamical process is more importance relative to thermodynamical process in those regions.

Q3. Are there any new potential sources of its predictability excluding ENSO impacts?
Q1. Is it possible beyond 7-month lead time?
A1. We found that the skillful prediction regions in the North Pacific (30–40N, 180W–160W), off the west coast of Australia and California, and western tropical Atlantic, up to 18-month lead time.

Q2. Should it be considered as a new type of information beyond the common climate prediction information such as sea surface temperature?
A2. Yes. SSH prediction skill is high relative to SST prediction skill over the Pacific warm pool region in DJF about 5-month lead, some regions in the North Pacific (30–40N, 180W–160W) beyond 12-month lead, off the west coast of the South American Continent around 7–9 month lead time. Higher prediction skill of SSH than that of SST may suggest that ocean dynamical process is more importance relative to thermodynamical process in those regions.

Q3. Are there any new potential sources of its predictability excluding ENSO impacts?
A3. At least, the Indian Ocean Dipole.
Q1. Is it possible beyond 7-month lead time?

A1. We found that the skillful prediction regions in the North Pacific (30–40N, 180W–160W), off the west coast of Australia and California, and western tropical Atlantic, up to 18-month lead time.

Q2. Should it be considered as a new type of information beyond the common climate prediction information such as sea surface temperature?

A2. Yes. SSH prediction skill is high relative to SST prediction skill over the Pacific warm pool region in DJF about 5 month-lead, some regions in the North Pacific (30–40N, 180W–160W) beyond 12 month-lead, off the west coast of the South American Continent around 7-9 month lead time. Higher prediction skill of SSH than that of SST may suggest that ocean dynamical process is more important relative to thermodynamical process in those regions.

Q3. Are there any new potential sources of its predictability excluding ENSO impacts?

A3. At least, the Indian Ocean Dipole.

Q4. Further research are required to understand why the regional SSH prediction in the North Pacific (30–40N, 180W–160W) is skillful?
Q1. Is it possible beyond 7-month lead time?

A1. We found that the skillful prediction regions in the North Pacific (30-40N, 180W-160W), off the west coast of Australia and California, and western tropical Atlantic, up to 18-month lead time.

Q2. Should it be considered as a new type of information beyond the common climate prediction information such as sea surface temperature?

A2. Yes. SSH prediction skill is high relative to SST prediction skill over the Pacific warm pool region in DJF about 5 month-lead, some regions in the North Pacific (30-40N, 180W-160W) beyond 12 month-lead, off the west coast of the South American Continent around 7-9 month lead time. Higher prediction skill of SSH than that of SST may suggest that ocean dynamical process is more importance relative to thermodynamical process in those regions.

Q3. Are there any new potential sources of its predictability excluding ENSO impacts?

A3. At least, the Indian Ocean Dipole.

Q4. Further research are required to understand why the regional SSH prediction in the North Pacific (30-40N, 180W-160W) is skillful?

Some preliminary analysis
ACC for DJF of next year from June 1st (19.5 month lead)

(a) SSH

(b) SST
ACC for DJF of next year from June 1st (19.5 month lead)

(a) SSH

(b) SST

Time series of DJF_SSHA averaged in the box (cm)

Individual ensemble member (19.5-month lead prediction)

Obs. Ensemble mean
ACC for DJF of next year from June 1st (19.5 month lead)

(a) SSH

(b) SST

Time series of DJF_SSHA averaged in the box (cm)
Individual ensemble member (19.5-month lead prediction)
Obs.
Ensemble mean

Time series of DJF_SSTA averaged in the box (°C)

Ensemble mean
Obs.
Successful prediction of positive SSH anomaly in 2000/01 DJF issued on June 1, 1999, may be the key.
Regional anomaly (in 30-40N, 180W-160W) plumes from JJA1999 to MAM2001 (prediction issued on June 1, 1999)

The positive anomaly persisted to SON2000, and recovered to DJF2000/01

The positive anomaly disappeared in SON2000
Ekman upwelling anom. (1×10^{-6} m/s)

Reanalysis

Prediction issued on June 1, 1999

Net heat flux anom (W m^{-2})

Reanalysis

Prediction issued on June 1, 1999

Decaying

Downwelling
Q4. Further research are required to understand why the regional SSH prediction in the North Pacific (30–40N, 180W-160W) is skillful?
Q4. Further research are required to understand why the regional SSH prediction in the North Pacific (30-40N, 180W-160W) is skillful?

A4. Dynamical process associated with wind-driven downwelling may play some roles on the fact that the positive SSH anomaly observed in June 1999 persisted to SON2000, and partly recovered to DJF2000/01.
Q4. Further research are required to understand why the regional SSH prediction in the North Pacific (30-40N, 180W-160W) is skillful?

A4. Dynamical process associated with wind-driven downwelling may play some roles on the fact that the positive SSH anomaly observed in June 1999 persisted to SON2000, and partly recovered to DJF2000/01.

Further research are required to understand the processes...
Another research direction:
Another research direction:

“How to improve the prediction skill”
Another research direction:

“How to improve the prediction skill”

Introduce new prediction system (SINTEX-F2)
Schematic of numerical seasonal prediction: “baton pass”

1. “Observation” for the current state

2. Initialization (assimilation)

3. Numerical integration by a model

\[x(t_0) + \Delta t \times M = X(t_0 + \Delta t) \]

Prediction of future
Two strategies are possible for improving the prediction skill:
#1 model development and #2 ocean initialization

Schematic of numerical seasonal prediction: “baton pass”

1. “Observation” for the current state

2. Initialization (assimilation)

3. Numerical integration by a model

\[x(t_0) + \Delta t \times M = X(t_0 + \Delta t) \]
Schematic of numerical seasonal prediction: "baton pass"

1. "Observation" for the current state
2. Initialization (assimilation)
3. Numerical integration by a model

Two strategies are possible for improving the prediction skill:
#1 model development and #2 ocean initialization

Prediction of future

\[x(t_0) + \Delta t \times M = X(t_0 + \Delta t) \]

Which step is more critical?
Two strategies are possible for improving the prediction skill:

#1 model development

#2 ocean initialization

Schematic of numerical seasonal prediction: “baton pass”

1. “Observation” for the current state

2. Initialization (assimilation)

3. Numerical integration by a model

Prediction of future

\[x(t_0) + \Delta t \times M = X(t_0 + \Delta t) \]

Which step is more critical?

Figure 3.1. Progress in the seasonal forecast skill of the ECMWF operational system since it became operational around 1996. The yellow bar shows the relative reduction in mean absolute error of forecast of SST in the eastern Pacific (NINO3) integrated over the 1-6 months lead time. Contribution from model development (blue bar) and ocean initialization (red bar) are equally important. Developments in ocean and atmosphere models also contribute to the ocean initialization.

Seasonal forecasts use lower resolution models than those in NWP, mainly because the length of the integration, the number of ensemble members and the need for calibration adds to the computational cost. The atmospheric model has a typical resolution of 0.5-1 degree in the horizontal, with 60 to 90 vertical levels. The ocean resolution is typically 1 degree (with equatorial refinement), although in the latest MetOffice seasonal forecasting system the ocean resolution is of 0.25 (at expense of reducing the reforecast data set). The forecast lead time is typically 6-7 months, sometimes extended up to 12 months. The real time forecasts require about 40-50 ensemble members. The calibration reforecasts span a period of approximately 30 years, with hindcasts initialized every month using a reduced ensemble (~11-15 members). In total, about 200 years-worth of coupled model integration years are needed for a seasonal forecast at 7 months lead time initialized from a single calendar month. Or in other words, 2400 years-worth of coupled integrations are needed for seasonal forecasts initialized each month.

Seasonal forecasts use both the NRT data stream for initialization of real time, and the BRT data stream in the reanalyses needed for the calibration data set. BRT data is also used for verification.

3.1 Ocean Initialization

The simplest way of providing initial conditions is to run an ocean model forced with observed winds and fresh-water fluxes from atmospheric reanalyses and with a strong constraint to

[Balmaseda et al. 2015]
Two strategies are possible for improving the prediction skill:

1. **Model Development**
2. **Ocean Initialization**

Schematic of numerical seasonal prediction: “baton pass”

1. “Observation” for the current state
2. **Initialization** (assimilation)
3. **Numerical integration** by a model

\[x(t_0) + \Delta t \times M = X(t_0 + \Delta t) \]

Which step is more critical?

Some previous works (e.g. ECMWF system) suggest that #1 model development and #2 ocean initialization are equally important for improving seasonal prediction skill.

Figure 3.1. Progress in the seasonal forecast skill of the ECMWF operational system since it became operational around 1996. The yellow bar shows the relative reduction in mean absolute error of forecast of SST in the eastern Pacific (NINO3) integrated over the 1-6 months lead time. Contribution from model development (blue bar) and ocean initialization (red bar) are equally important. Developments in ocean and atmosphere models also contribute to the ocean initialization.

Seasonal forecasts use lower resolution models that those in NWP, mainly because the length of the integration, the number of ensemble members and the need for calibration adds to the computational cost. The atmospheric model has a typical resolution of 0.5-1 degree in the horizontal, with 60 to 90 vertical levels. The ocean resolution is typically 1 degree (with equatorial refinement), although in the latest MetOffice seasonal forecasting system the ocean resolution is of 0.25 (at expense of reducing the reforecast data set). The forecast lead time is typically 6-7 months, sometimes is extended up to 12 months. The real time forecasts requires about 40-50 ensemble members. The calibration reforecasts span a period of approximately 30 years, with hindcasts initialized every month using a reduced ensemble (~11-15 members). In total, about 200 years-worth of coupled model integration years are needed for a seasonal forecast at 7 months lead time initialized from a single calendar month. Or in other words, 2400 years-worth of coupled integrations are needed for seasonal forecasts initialized each month.

Seasonal forecasts use both the NRT data stream for initialization of real time, and the BRT data stream in the reanalyses needed for the calibration data set. BRT data is also used for verification.

3.1 Ocean Initialization

The simplest way of providing initial conditions is to run an ocean model forced with observed winds and fresh-water fluxes from atmospheric reanalyses and with a strong constraint to [Balmaseda et al. 2015](#)
How to improve the seasonal prediction system
How to improve the seasonal prediction system

Strategy 1: Model development (Doi et al. 2016, JAMES)
From SINTEX-F1 to SINTEX-F2 (high-res. & sea ice)
How to improve the seasonal prediction system

Strategy 1: Model development (Doi et al. 2016, JAMES)
 From SINTEX-F1 to SINTEX-F2 (high-res. & sea ice)

Strategy 2: Ocean Initialization (Doi et al. 2017, JC)
 From SST-nudging to three dimensional variational scheme (3DVAR)
 using 3D profile data of Temperature and Salinity
Strategy 1: Model development (Doi et al. 2016, JAMES)

<table>
<thead>
<tr>
<th></th>
<th>AGCM</th>
<th>OGCM</th>
<th>Coupling</th>
<th>Sea Ice</th>
</tr>
</thead>
<tbody>
<tr>
<td>SINTEX-F1</td>
<td>ECHAM4 T106L19</td>
<td>OPA8 2×(0.5-2) L31</td>
<td>Every 2 hour No flux correction</td>
<td>restoring obs. climatology</td>
</tr>
<tr>
<td>(Luo et al. 2005)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SINTEX-F2</td>
<td>ECHAM5 T106L31</td>
<td>NEMO(OPA9) 0.5×0.5 L31</td>
<td>Same as F1</td>
<td>LIM2</td>
</tr>
<tr>
<td>(Masson et al. 2012; Sasaki et al. 2013)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Initialization: SST-nudging scheme
- 12 ensemble members
- 2 sst data (1º weekly, 0.25º daily) × 3 nudging strengths × 2 physical schemes for SVS ocean mixing (Sasaki et al. 2012)

“A high-resolution with a dynamical sea-ice model” may improve the coastal climate phenomena and the mid, high-latitude climate.
Strategy 2: Ocean Initialization (Doi et al. 2017, JC)

The initialization skill of subsurface ocean

ACC for D20A in May in 1983-2015
(a) SST-nudging v.s. EN4

Initialization of SST
Strategy 2: Ocean Initialization (Doi et al. 2017, JC)

The initialization skill of subsurface ocean

ACC for D20A in May in 1983-2015
(a) SST-nudging v.s. EN4

Initialization of SST + Subsurface T & S
Strategy 2: Ocean Initialization (Doi et al. 2017, JC)

The initialization skill of subsurface ocean

ACC for D20A in May in 1983-2015
(a) SST-nudging v.s. EN4

Initialization of SST
+ Subsurface T & S
Strategy 2: Ocean Initialization (Doi et al. 2017, JC)

The initialization skill of subsurface ocean

Initialization of SST + Subsurface T & S
Strategy 2: Ocean Initialization (Doi et al. 2017, JC)

The initialization skill of subsurface ocean

Initial state of subsurface ocean in the tropical Indian Ocean and the tropical Atlantic, and the mid-latitude is closer to the observation by the new initialization scheme.

Initialization of SST + Subsurface T & S
ACC of SSH prediction from June 1st
ACC of SSH prediction from June 1st
Prediction of SSH anom. in DJF2000/01 issued on June 1, 2000 (1 × 10^{-1} cm)
Prediction of SSH anom. in DJF2004/05 issued on June 1, 2004 (1 × 10^{-1} cm)

(a) AVISO

(b) F1

(c) F2

(d) F2–3DVAR
The newly developed seasonal prediction system “SINTEX-F2”
The newly developed seasonal prediction system "SINTEX-F2"

F2-3DVAR system is, relative to F1 and F2 systems,
The newly developed seasonal prediction system "SINTEX-F2"

F2-3DVAR system is, relative to F1 and F2 systems, better at predicting SSH in some regions of the North Pacific, the Pacific warm pool region, and El Niño region.
The newly developed seasonal prediction system “SINTEX-F2”

F2-3DVAR system is, relative to F1 and F2 systems, better at predicting SSH in some regions of the North Pacific, the Pacific warm pool region, and El Niño region.
The newly developed seasonal prediction system “SINTEX-F2”

F2-3DVAR system is, relative to F1 and F2 systems,

✅ better at predicting SSH in some regions of the North Pacific, the Pacific warm pool region, and El Niño region.

✅ however, is not always better (depend on regions and cases).
The newly developed seasonal prediction system “SINTEX-F2”

F2-3DVAR system is, relative to F1 and F2 systems,
✓ better at predicting SSH in some regions of the North Pacific, the Pacific warm pool region, and El Niño region.

✓ however, is not always better (depend on regions and cases).
The newly developed seasonal prediction system "SINTEX-F2"

F2–3DVAR system is, relative to F1 and F2 systems,
✓ better at predicting SSH in some regions of the North Pacific, the Pacific warm pool region, and El Niño region.

✓ however, is not always better (depend on regions and cases).

✓ In 2000/01DJF, SSH prediction in some region of the North Pacific is improved mainly due to the model development (high-resolution?)
The newly developed seasonal prediction system “SINTEX-F2”

F2-3DVAR system is, relative to F1 and F2 systems,
✓ better at predicting SSH in some regions of the North Pacific, the Pacific warm pool region, and El Niño region.

✓ however, is not always better (depend on regions and cases).

✓ In 2000/01 DJF, SSH prediction in some region of the North Pacific is improved mainly due to the model development (high-resolution?)
The newly developed seasonal prediction system “SINTEX-F2”

F2-3DVAR system is, relative to F1 and F2 systems,
✓ better at predicting SSH in some regions of the North Pacific, the Pacific warm pool region, and El Niño region.

✓ however, is not always better (depend on regions and cases).

✓ In 2000/01DJF, SSH prediction in some region of the North Pacific is improved mainly due to the model development (high-resolution?)

✓ In 2004/05DJF, SSH prediction in the Pacific warm pool region, northeastern tropical Pacific, and Kuroshio region is improved mainly due to assimilation of ocean subsurface observation (Note: Argo data is available after 2004)
The newly developed seasonal prediction system “SINTEX-F2”

F2-3DVAR system is, relative to F1 and F2 systems,
✓ better at predicting SSH in some regions of the North Pacific, the Pacific warm pool region, and El Niño region.

✓ however, is not always better (depend on regions and cases).

✓ In 2000/01DJF, SSH prediction in some region of the North Pacific is improved mainly due to the model development (high-resolution?)

✓ In 2004/05DJF, SSH prediction in the Pacific warm pool region, northeastern tropical Pacific, and Kuroshio region is improved mainly due to assimilation of ocean subsurface observation (Note: Argo data is available after 2004)

Further research are required to understand the processes...
Toward ocean service for stakeholders...
Toward ocean service for stakeholders...

We are now providing quasi real-time seasonal prediction information of SSH every month by the SINTEX-F1 system.
Toward ocean service for stakeholders...

- We are now providing quasi real-time seasonal prediction information of SSH every month by the SINTEX-F1 system.
- We are now preparing to provide quasi real-time seasonal prediction information of SSH by the SINTEX-F2-3DVAR system up to 24 month lead.
Toward ocean service for stakeholders...

- We are now providing quasi real-time seasonal prediction information of SSH every month by the SINTEX-F1 system.
- We are now preparing to provide quasi real-time seasonal prediction information of SSH by the SINTEX-F2-3DVAR system up to 24 month lead.
- We hope that those information is helpful for prediction beyond ocean physical variables (e.g. chl-α)
End