Salish Sea Model Ecosystem - Lower Trophic: Tidally driven nutrient supply to surface waters in the Northern Strait of Georgia

Elise Olson, Susan Allen, Ben Moore-Maley, Doug Latornell
UBC
Background: **Salish Model Ecosystem - Lower Trophic**

SalishSeaCast Physical Model (Soontiens et al, 2015)
- NEMO (Madec et al 2012) v3.6 primitive equation, baroclinic model
- GLS vertical turbulence in k-ε regime
- 398 x 898 x 40 grid
 - ~500 m horizontal, 1-27 m vertical
- forcing:
 - tides: 8 constituents
 - atmospheric: hourly 2.5 km resolution from Environment Canada
 - open boundary SSH (west)
 - rivers (150+): climatology except for Fraser measured at Hope
SMELT Biological Model – Based on 1-d SOG Model (Olson et al., submitted, 2019; Allen and Wolfe, 2013; Moore-Maley et al., 2016))

- nutrients, phytoplankton, zooplankton, detritus
 - *M. rubrum* is a mixotroph
- mesozooplankton closure based on climatology
- forcing: nutrient input through rivers (climatology) and at open boundaries (climatology + LiveOcean model), light
Model Evaluation: Seasonal Cycles

Hakai Institute, Katie Pocock, and Stephanie King
Discovery Passage Tidal Jet and Nitrate Plume
results in:

Elise M. Olson, Susan E. Allen, Vy Do, Michael Dunphy, and Debby Ianson, 2019. Nutrient Supply by a Tidal Jet in the Salish Sea Based on a Highly Resolved Biogeochemical Model. Submitted to *JGR: Oceans*.
Conclusions: Northern Nitrate

• Strong tidal flow in Discovery Passage leads to a southward pulse of nitrate in surface waters

• Downstream, increased stability and reduced velocities (greater residence times) lead to greater phytoplankton biomass and new production

• Regions of tidally enhanced mixing may increase local ecosystem resilience to anthropogenic forcing

Acknowledgements

Salish Sea NEMO Model group: Tereza Jarnikova, Michael Dunphy, Nancy Soontiens, Jie Liu, Rachael Mueller, Vicky Do

Funding: MEOPAR, MITACS, Pacific Salmon Foundation

Data: Stephanie King, Katie Pocock, Hayley Dosser Hakai Institute, DFO

Thank you!