Aggregation habitat variation of pacific saury and its influence factors based on HSI model

Chuanxiang Hua

2019-10-16
1. Introduction
2. Material and methods
3. Results
4. Discussion
5. Summary
1. INTRODUCTION

There are about 60 China’s PS fishing vessels operated in the NWP.

The fishing area mainly distributed outside of Japan/Russia’s EEZ.

Main fishing season: June to November
1. INTRODUCTION

(Chang, et al, 2018)
1. INTRODUCTION

HSI Model → Annual HSI/PA

Climate-Ocean indices → Annual Total Catch

(PA: potential suitable habitat area)
1. Introduction
2. Material and methods
3. Results
4. Discussion
5. Summary
2. MATERIAL AND METHODS

HSI Model

- Fishing Data
- Yield-Density Model (SI) (Reciprocal of binomial)
- Weighted arithmetic mean model (WAMM)

\[SI_{v,i} = \frac{Effort_i}{Effort_{max}} \]

\[y = \frac{1}{(a + bx + cx^2)} \]

\[HSI = SI_{sst} \cdot W_{sst} + SI_{sstg} \cdot W_{sstg} \]

(Hua, et al, online)
2. MATERIAL AND METHODS

- Fishing Data

\[SI_{v,i} = \frac{Effort_i}{Effort_{max}} \]
2. MATERIAL AND METHODS

Potential suitable habitat area (km²) \((PA)\)
\[\text{HSI} \geq 0.6 \]
WGS84

(Ito, et al, 2007)
2. MATERIAL AND METHODS

Annual Total Catch

Annual Total Catch (NPFC website, 2018)
2. MATERIAL AND METHODS

- Fishing Data
- Yield-Density Model (SI)
- Weighted arithmetic mean model (WAMM)
1. Introduction of Pacific saury fishery in Chinese mainland
2. Material and methods
3. Results
4. Discussion
5. Summary
3. RESULTS

HSI Model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Unit</th>
<th>Opt</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>SST</td>
<td>°C</td>
<td>14.05</td>
<td>14.02</td>
</tr>
<tr>
<td>SSTG</td>
<td>°C/km</td>
<td>0.0179</td>
<td>0.0178</td>
</tr>
</tbody>
</table>

\[
HSI = \hat{SI}_{sst} \cdot 41.10\% + \hat{SI}_{sstg} \cdot 58.90\%
\]
3. RESULTS

Monthly distribution of HSI

- In Winter and Spring, High HSI (HSI≥0.6) area, distributed in MW, southern 40°N
- In main fishing season: northern ward in Jun-Aug Southern ward Sep-Nov northern 40 °N
3. RESULTS

- In 2016, the value of annual FA/PA was significantly lower than other years.
3. RESULTS

- In latitude direction, the value of annual HSI value in 2016 is significantly lower than other years.
3. RESULTS

The relationship between yearly HSI/PA and climate-ocean indices

<table>
<thead>
<tr>
<th></th>
<th>Nino 3.4</th>
<th>NPI</th>
<th>PDO</th>
<th>AOI</th>
<th>SST FA</th>
<th>SST KR</th>
<th>SST MW</th>
<th>SST OY</th>
<th>SSTG FA</th>
<th>SSTG KR</th>
<th>SSTG MW</th>
<th>SSTG OY</th>
<th>OY Area</th>
<th>OY SP</th>
<th>KR SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSI</td>
<td></td>
</tr>
<tr>
<td>FA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.850</td>
<td>-0.718</td>
<td>-0.746</td>
<td>-0.825</td>
<td>0.557</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5271</td>
<td></td>
</tr>
<tr>
<td>KR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.365</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.541</td>
</tr>
<tr>
<td>MW</td>
<td>-0.536†</td>
<td>-0.807</td>
<td>-0.739</td>
<td>-0.668</td>
<td>-0.750</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.6491</td>
<td></td>
</tr>
<tr>
<td>OY</td>
<td>-1.675</td>
<td>-0.550</td>
<td>-0.586</td>
<td>-0.825</td>
<td></td>
</tr>
<tr>
<td>PA</td>
<td></td>
</tr>
<tr>
<td>FA</td>
<td>-0.525</td>
<td>-0.839</td>
<td></td>
<td>-0.679</td>
<td>-0.831</td>
<td>-0.721</td>
<td>-0.939</td>
<td>-0.711</td>
<td>-0.682</td>
<td>-0.696</td>
<td>-0.529</td>
<td>-0.575</td>
<td>0.557†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR</td>
<td>-0.657</td>
<td>-0.839</td>
<td>-0.632</td>
<td>-0.721</td>
<td>-0.704</td>
<td>-0.625</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW</td>
<td>-0.589</td>
<td></td>
</tr>
<tr>
<td>OY</td>
<td>-0.682</td>
<td>-0.696</td>
<td>-0.529</td>
<td>-0.575</td>
<td></td>
</tr>
</tbody>
</table>

Hillslope Area Index (HSI), Positional Area (PA)

- *FA* = FA SST
- *KR* = KR SST
- *MW* = MW SST
- *OY* = OY SST

*Note: * Values in bold are statistically significant at the 0.05 level.

Graphs show the correlation between PA and FA year by year.
3. RESULTS

The relationship between yearly HSI/PA and last year’s climate-ocean indices

	Nino 3.4	NPI	PDO	AOI	SST FA	SST KR	SST MW	SST OY	SSTG FA	SSTG KR	SSTG MW	SSTG OY	OY Area	OY SP	KR SP	
HSI																
FA	-0.688	-0.741	0.578	0.543	-0.710	-0.666	-0.864	-0.631								
KR	-0.692	-0.732	-0.807	0.569	0.615	0.727	0.684									
MW	0.543	-0.653	0.754	0.626	0.688	0.550	0.604									
OY	0.556	-0.582	-0.684	0.705	0.666	0.640	0.574									
PA																
FA	-0.820	-0.824	-0.604	0.600	0.591	0.820	-0.556									
KR	-0.626	-0.807	1.569	-0.613	0.727	-0.684										
MW	-0.626	-0.684	1.705	-0.543	-0.666	0.640										
OY	0.574	-0.824	-0.684	0.705	0.666	0.640										

fitted HSI FA

fitted HSI FA

fitted HSI FA
3. RESULTS

The relationship between TC and last year’s HSI/PA/climate-ocean

<table>
<thead>
<tr>
<th></th>
<th>Niño 3.4 last year</th>
<th>NPI last year</th>
<th>PDO last year</th>
</tr>
</thead>
<tbody>
<tr>
<td>corr</td>
<td>-0.569</td>
<td>0.582</td>
<td>-0.635</td>
</tr>
<tr>
<td>p</td>
<td>0.037</td>
<td>0.032</td>
<td>0.017</td>
</tr>
<tr>
<td>a</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>b</td>
<td>1.404</td>
<td>1010.758</td>
<td>2.639</td>
</tr>
<tr>
<td>R2</td>
<td>0.269</td>
<td>0.217</td>
<td>0.333</td>
</tr>
</tbody>
</table>
CONTENT

1. Introduction of Pacific saury fishery in Chinese mainland
2. Material and methods
3. Results
4. Discussion
5. Summary
4. DISCUSSION

Oceanographic of Fishing Ground

SST \rightarrow Migration
(Ito, et al, 2013)

SST Front \rightarrow Fishing Ground
(Tseng, et al, 2014)

SSTG \rightarrow Aggregation

(Ito, et al, 2013)

(Tseng, et al, 2014)
4. DISCUSSION

The SSTG

Medium and small scales
SSTG can changes the vertical movement of seawater and boundary layer thickness (Chang, 2017)

Large scale
SSTG intensity of the western Pacific Ocean (0°N–10°N, 130°E–150°E) can affects ENSO events (Hoel, Funk, 2013)

SSTG could reflect the complexity of the ocean’s system

Aggregation

Productivity

\[
SSTG_{i,j} = \sqrt{\left(\frac{SST_{i+1,j} - SST_{i-1,j}}{\Delta x}\right)^2 + \left(\frac{SST_{i,j+1} - SST_{i,j-1}}{\Delta y}\right)^2}
\]
4. DISCUSSION

The SSTG

Medium and small scales
SSTG can changes the vertical movement of seawater and boundary layer thickness \((Chang, 2017)\)

Large scale
SSTG intensity of the western Pacific Ocean \((0^\circ N–10^\circ N, 130^\circ E–150^\circ E)\) can affects ENSO events \((Hoel, Funk, 2013)\)

SSTG could reflect the complexity of the ocean’s system

Aggregation

Productivity
4. DISCUSSION

The Regime Shift

Niño 3.4

2016

El Niño + La Niña

HSI

PA

SSTG
1. Introduction of Pacific saury fishery in Chinese mainland
2. Material and methods
3. Results
4. Discussion
5. Summary
Hope these results could give basic data and information for the stock assessment and management of PS.