Evaluation of infauna community structure through microscopy and eDNA

Joanna Strzelecki, Sarah Stephenson, Jodie van de Kamp, Lev Bodrossy, Mick Haywood, John Keesing, Lydianne Matio, Damian Thomson and Melanie Trapon | September 2019
Importance of Infauna

- Numerous, widely distributed, diverse
- An important link in food web
 - link primary producers with higher trophic levels
 - food for economically important species: crabs, shrimps, fish
- Major role in recycling organic matter
 - ingestion
 - bioturbation
 - bio-irrigation
- Indicator of environmental condition (do not move very far so they cannot avoid pollution)
 - nutrient pollution
 - chemical contaminants
 - ocean acidification

- burrow into bottom sediment
- connected to the water by tubes and tunnels

Byers and Grabowski (2013)
Aim

- describe and compare infauna using traditional biodiversity assessments and eDNA
Methods field

Infauna is patchy on a small spatial scale – need to homogenise sample before subsampling for microscopy and DNA analyses (or preserve for morphology & DNA analyses (Creer et al 2010))

Water siphoned out

Sediment emptied to plastic bag and homogenised by gentle shaking

Tipped into a tray and split in ½

DNA (-20°C)

Microscopy (formalin)
Samples sieved through 4, 2.8, 2, 1.4, 1 and 0.5 mm sieves to remove preservative and fine sediment

Sieved samples sorted into basic groups

Specimens identified to the lowest taxonomic unit and counted
Methods eDNA

- samples were thawed
- shells or rocks removed
- sediment homogenized in a bench-top blender on the highest speed for 2 minutes

DNA extracted in triplicate from a 0.5 g subsample of homogenised sediment using the QIAGEN DNeasy PowerSoil® Kit

18SV9 rDNA 18SV4 rDNA mt16S and COI genes

Next generation sequencing of all target genes using the Illumina MiSeq platform

custom pipeline Greenfield Hybrid Amplicon Pipeline v2.1 (GHAPv2.1) (uses USEARCH sequence analysis tools (Edgar, 2013))

Next generation sequencing

Taxonomic assignment
<table>
<thead>
<tr>
<th>taxa</th>
<th>Microscopy</th>
<th>18Sv9 rDNA</th>
<th>18Sv4 rDNA</th>
<th>mt16S (polychaetes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total OTUs</td>
<td>123</td>
<td>2043</td>
<td>2042</td>
<td>531</td>
</tr>
<tr>
<td>Polychaeta</td>
<td>36</td>
<td>132</td>
<td>59</td>
<td>230</td>
</tr>
<tr>
<td>Nematoda</td>
<td>1</td>
<td>367</td>
<td>239</td>
<td>0</td>
</tr>
<tr>
<td>Gastropoda</td>
<td>4</td>
<td>28</td>
<td>9</td>
<td>23</td>
</tr>
<tr>
<td>Bivalvia</td>
<td>7</td>
<td>36</td>
<td>19</td>
<td>83</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>8</td>
<td>38</td>
<td>27</td>
<td>0</td>
</tr>
<tr>
<td>Copepoda</td>
<td>1</td>
<td>134</td>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>Echinodermata</td>
<td>4</td>
<td>7</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Decapoda</td>
<td>6</td>
<td>9</td>
<td>6</td>
<td>29</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Isopoda</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Comparison of relative abundances

Oweniidae

- $r = 0.35$
- $p = 0.02$
- $n = 43$

Syllidae

- $r = 0.20$
- $p = 0.42$
- $n = 17$

Spionidae

- $r = 0.34$
- $p = 0.04$
- $n = 35$

Polychaeta

- Spearman rank correlation coefficient
- Correlations limited to taxa uncovered by both methods
Microscopy: Environmental variables structuring infauna

Depth
P (Permanova) = 0.001
P (Permdisp) = 0.448
Pearson correlation coefficient >0.5
Microscopy: environmental variables structuring infauna

Sediment type
P (Permanova) = 0.001
P (Permdisp) = 0.379
Pearson correlation coefficient >0.5
Microscopy: environmental variables structuring infauna

Sediment sorting (uniformity of grain size)

- P (Permanova) = 0.001
- P (Permdisp) = 0.4

Pearson correlation coefficient >0.5
18Sv9 rDNA: environmental variables structuring infauna

Depth

P (Permanova) = 0.001
P (Permdisp) = 0.969
Pearson correlation coefficient >0.5
18Sv9 rDNA: environmental variables structuring infauna

Sediment type

- P (Permanova) = 0.001
- P (Permdisp) = 0.09
- Pearson correlation coefficient >0.5
18Sv9 rDNA: environmental variables structuring infauna

Sediment sorting
P (Permanova) = 0.02
P (Permdisp) = 0.084
Pearson correlation coefficient >0.5
Amphipods: false negative

- Low abundance - no
- Incomplete extraction, removal of inhibitors – will try DNeasy Blood & Tissue Kit (QIAGEN)
- Primer mismatch
- Secondary DNA structures
- Too stringent filtering, OTU clustering – no

- Affects
 - relative abundances
 - Diversity α β
 - Relationship with environmental factors
Advantages and challenges

<table>
<thead>
<tr>
<th></th>
<th>Microscopy</th>
<th>DNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well understood</td>
<td>✓ More reported standard protocols, more comparability, reproducibility</td>
<td>Biases: amplification, sequencing errors, markers, organisms on the surface, in the guts of target taxa, persistence in sediment</td>
</tr>
<tr>
<td>Time</td>
<td>Slow (small samples no)</td>
<td>Fast (large no of samples)</td>
</tr>
<tr>
<td>Historical data/time series/museum collections</td>
<td>✓</td>
<td>gene sample repositories needed</td>
</tr>
<tr>
<td>Soft bodies organisms</td>
<td>Not well preserved</td>
<td>✓</td>
</tr>
<tr>
<td>Cryptic species</td>
<td>Morphological similarity</td>
<td>Genetically distinct</td>
</tr>
<tr>
<td>Size</td>
<td>Size biased</td>
<td>No size limit</td>
</tr>
<tr>
<td>Life stages (different appearance)</td>
<td>Mainly adults</td>
<td>All stages (eggs)</td>
</tr>
<tr>
<td>Quantitative</td>
<td>✓</td>
<td>Qualitative, relative no but problematic for eukaryotes</td>
</tr>
<tr>
<td>Misidentification</td>
<td>Taxonomic expertise</td>
<td>Further analysis, suboptimal taxonomic resolution false negative, reference database</td>
</tr>
</tbody>
</table>
Thank you
E-DNA methods

• Three reference samples containing crocodile (*Crocodylus porosus*), *Phaeodactylum* diatom (*Phaeodactylum tricornutum*) and the marine mussel (*Mytilus edulis*) were also processed in three replicates as positive controls.

• To identify potential laboratory contamination within DNA samples, three ultra-pure water (nuclease free water) controls were analysed at the same time as the environmental sediment samples.

• Three contamination controls (DNA free water placed into the blender and treated as a sample) were sequenced to identify potential contamination associated with the use of the blender for homogenisation.
eDNA methods

- DNA was sent to the Ramaciotti Centre for Genomics (UNSW Sydney, Australia) for amplicon generation and sequencing.
- Different protocols were required for the amplification and library generation of each target gene.
- Next generation sequencing of all target genes was carried out using the Illumina MiSeq platform.
- Broad eukaryote target genes: Mitochondrial COI (313 bp fragment) of the mitochondrial COI gene.
- 18S V4 rDNA - DNA was sent to the Ramaciotti Centre for Genomics where the 18S V4 rDNA region was amplified using gene primers TAREuk454FWD1 and TAREuk-Rev3 and sequenced with 250 bp paired reads.
Primer sets to target taxa

- PCR amplifications were carried using the AmpliTaq
- Sequenced data were processed using the custom pipeline Greenfield Hybrid Amplicon Pipeline v2.1 (GHAPv2.1) which utilises USEARCH sequence analysis tools (Edgar, 2013).

<table>
<thead>
<tr>
<th>Target taxa</th>
<th>Amplicon</th>
<th>Length (bp)</th>
<th>Primer forward</th>
<th>Primer reverse</th>
<th>Annealing temp</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foraminifera</td>
<td>v4 18S rDNA</td>
<td>300</td>
<td>GAAGGGCACCACAAGAAGC</td>
<td>CCACCTATCACAYAATCATG</td>
<td>56°C</td>
<td>Pochon et al., 2016</td>
</tr>
<tr>
<td>Polychaetes</td>
<td>mt16S</td>
<td>90</td>
<td>CCGGTYTGAACTCAGMTCA</td>
<td>TGGCACCTCGATGTTGGCT</td>
<td>58°C</td>
<td>Taberlet et al., 2018</td>
</tr>
<tr>
<td>Diatoms</td>
<td>v4 18S rDNA</td>
<td>350</td>
<td>GCGGTAATTCCAGCTCAAATAG</td>
<td>CTCTGACAATGGGAATACGAATA</td>
<td>58°C</td>
<td>Zimmerman et al., 2011</td>
</tr>
<tr>
<td>Crustaceans</td>
<td>v9 18S rDNA</td>
<td>180</td>
<td>TGGTGCATGGCCGTTCTTAGT</td>
<td>CATCTAAGGGCATCAGAGCC</td>
<td>56°C</td>
<td>Hardy et al., 2010</td>
</tr>
</tbody>
</table>
eDNA methods

- Samples were thawed just prior to DNA extraction
- Large fragments (shells or rocks) removed from the sample
- Sediment was homogenized using a bench-top blender on the highest speed setting for 2 minutes
- DNA was extracted in triplicate from a 0.5 g subsample of homogenised sediment using the QIAGEN DNeasy PowerSoil® Kit
- 18S rDNA and COI used
- 18S rDNA was used to assess the overall eukaryotic community composition, including the micro-, meio- and macrofauna and specific primer pairs were applied to target specific taxonomic groups of interest (polychaetes, diatoms, foraminifera and crustaceans)
- The primers used in COI were designed to be biased against the microbial eukaryotes, thus the results are the macro- and meiofauna
Sequence classification

- 18S OTU sequences were classified by BLASTing them against a curated reference set derived from the SILVA non-bacterial sequences (V128)
- mt16S a custom made mt16S database from blast cleaned up and curated by Paul Greenfield
The amplicon sequence data was processed using GHAP, an in-house amplicon clustering and classification pipeline built around tools from USearch combined with locally-written tools for demultiplexing (diving sequence reads into separate files for each index tag/sample, trimming and generating OTU tables. This pipeline, available at https://doi.org/10.4225/08/59f98560eba25 takes files of reads and produces tables of classified OTUs and their associated reads counts across all samples.

The amplicon reads are demultiplexed and trimmed, and the read pairs are then merged (using fastq_mergepairs) and de-replicated (using fastx_uniques) The merged reads are then trimmed again and clustered at 97% similarity (using cluster_otus) to generate OTUs (Operational Taxonomic Units).

Representative sequences from each OTU are then classified by using ublast to find the closest match in a set of reference sequences. Eukaryote ribosomal SSU (18S) reads are matched against curated sequences derived from the SILVA v128 SSU reference set, and other amplicons, such as polychaetes and mitochondrial COI, are matched against custom-made reference sets.

The pipeline then maps the merged reads back onto the OTU sequences (using usearch_global) to get accurate read counts for each OTU/sample pair, and generates OTU tables in both text and .biom (v1) formats, complete with taxonomic classifications and species assignments.

The OTU tables are then summarised over all taxonomic levels, combining the counts for identified taxa across all OTUs.
