At sea genetic stock identification of overwintering coho salmon in the Gulf of Alaska: Evaluation of nanopore sequencing for remote real-time deployment

PICES W16 Oct 22nd

Christoph Deeg, Ben Sutherland, Tobi Ming, Collin Wallace, Kim Jonsen, Kelsey Flynn, Charlie Waters, Richard Beamish, Terry Beacham, and Kristi Miller

Stock Identification

- Needed for management of:
 - Harvest
 - Enhancement
 - Conservation
- Methods:
 - Scales, parasites, CWT
 - Allozymes
 - Genetic
 - Mini- / Micro-satellites
 - SNPs -> Highest resolution and accuracy

Coho conservation units

GSI by SNP sequencing

- Genetic stock identification (GSI) by Single Nucleotide Polymorphism (SNP) sequencing
 - 1. Sequence (e.g. RAD-Seq) of representative populations
 - 2. Identify SNPs
 - 3. Primer pool to amplify SNPs
 - 4. Sequence SNPs of individuals from known origin (-> baseline)
 - 5. Sequence SNPs of individuals in question (-> query)
 - 6. Compare query with baseline -> assign to stock

Why use nanopore for GSI?

- Ion Torrent (semiconductor) based SNP GSI
 - Genotyping by the thousands (GT-Seq) -> high throughput
 - Disadvantage:
 - Large batches
 - Complex infrastructure
- Goal: In-field "real-time" SNP GSI
 - Fast and flexible genotyping with minimal infrastructure
- Nanopore sequencing
 - Disadvantages for GSI
 - High error rate
 - Limited pores available vs. Short amplicons
 - => concatenate amplicons!

Coho caught

GSI setup

Wetlab Workflow

- Extract DNA
 - Quickextract (20min)
- Multiplex PCR
 - V3 coho (296), V6 chinook (299))
 - AgriSeq kit
- Barcoding (fish-ID)
 - ONT 96 Barcoding kit -> Blunt end ligation
- Blunt end ligation of inverse adapters
- PCR-like concatenation
- Nanopore adapter ligation
- MinION Sequencing

Computational Workflow (nano2geno)

- Basecalling with MinKNOW
 - Ubuntu 14.06, 31.2 GiB RAM 7700K CPU @ 4.20GHz × 8
- Deconcatenate and bin
 - Porechop
 - Custom barcode files
 - Default binning
- Align with BWA
- Score with custom script n2g (Ben Sutherland)
- Assign to stock with rubias

GSI runs analyzed

- 1st IYS nanopore run: 31 coho + 2 Chinook 🥖 🖪
- Faulty flow cell priming
- 2nd IYS nanopore run: 44 coho + 1 Chinook
- PBS nanopore: Resequenced all 80 coho
- Resequencing on IonTorrent with matching baseline / primers
- Independent sequencing of all IYS coho with new primer set and baseline

Results: Reads and Concatenation

- 1.5 5.38M reads
- 1.5 2 x inflation after deconcatenation
- Inefficient Barcoding!
 - None bin 12-50%!

Read distribution

- Read distribution somewhat even
 - No normalization!
- Need > 2000 reads for >50% (141) of loci at 10x
 - IYS1: 9/31 (29%)
 - IYS2: 43/44 (98%)
 - PBS: 50/80 (63%)

Problematic loci

Homopolymer containing loci and loci problematic with n2g were excluded: 299 loci -> 282 loci

Stock assignment

Matching Reporting Unit assignment:nano vs ion:45.24%nano vs nano:40.63%vc vs n2g:83.67%

Matching Collection assignment:nano vs ion:24.39%nano vs nano:21.43%vc vs n2g:59.18%

Reporting unit composition

Poor database representation!

- Poor database representation + nanopore bias
 - Poor assignment scores
- New baseline/panel -> Kynoch and Mussel Inlets and Douglas Channel

IYS nanopore GSI summary

- At sea GSI of 52/75, concordant with IonTorrent GSI
 - 83 % SNP
 - 45% Reporting unit (baseline representation)
- Turnaround
 - Wetlab 14h
 - Sequencing 12h
 - Computation: 2-3d (basecalling!!)
- Throughput:
 - ~ Max 96 fish / flow cell
- Cost: Currently 5x of Ion Torrent
- Improvements needed!

Nano2geno improvements:

- Include barcode linker in primer
 - Faster, less none bin reads
- Improve concatenation efficiency
 - Higher throughput
- Prealiquot into 96 well plates
 - Quicker, less risk of BC cross contamination
- Use R10 flow cell
 - Lower errors -> drop coverage requirements

Nano2geno improvements

- Computational improvement
 - Use minIT -> actual real-time basecalling
- Improvement estimates:
 - < 24h from extraction to GSI
 - 5-10x throughput
 - Cut costs
 - Reuse flow cell -> variable batch size
 - Simpler protocol

GoA Coho Stock composition

SEAK	46
MusKyn	15
	10
DOUG	6
	5
LSKNA	5
	2
EVI+GStr	2
	2
COWA	2
HecLow+HStr	1

Thank you!

Prof. Kaganovsky crew IYS team

Molecular Genetic Lab

Ben Sutherland , Tobi Ming, Collin Wallace, Kim Jonsen, Kelsey Flynn, Terry Beacham

Richard Beamish

